cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356817 a(n) = Sum_{k=0..n} (-1)^k * (k*n-1)^(n-k) * binomial(n,k).

Original entry on oeis.org

1, -2, 0, 1, 144, 4143, 110368, 2535475, 13299968, -5169863825, -639341093376, -59073970497885, -4677854594527232, -276406098219258425, 2399871442122924032, 5163244810691492730907, 1331213942683118587674624, 262517264591996332314037215
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*(k*n-1)^(n-k)*binomial(n, k));

Formula

a(n) = n! * [x^n] exp( -x * (exp(n * x) + 1) ).
a(n) = [x^n] Sum_{k>=0} (-x)^k / (1 - (n*k-1)*x)^(k+1).