cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356812 Expansion of e.g.f. exp(x * (1 - exp(2*x))).

Original entry on oeis.org

1, 0, -4, -12, 16, 400, 2208, -448, -131840, -1357056, -4820480, 71120896, 1537308672, 14006460416, 3075702784, -2224350781440, -41354996154368, -359660395495424, 1675436608585728, 121894823709900800, 2317859245604208640, 20543311167964053504
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x(1-Exp[2x])],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 04 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-exp(2*x)))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (-x)^k/(1-(2*k+1)*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (-1)^k*(2*k+1)^(n-k)*binomial(n, k));
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (-1)^k*2^(n-k)*stirling(n-k, k, 2)/(n-k)!);

Formula

G.f.: Sum_{k>=0} (-x)^k / (1 - (2*k+1)*x)^(k+1).
a(n) = Sum_{k=0..n} (-1)^k * (2*k+1)^(n-k) * binomial(n,k).
a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k * 2^(n-k) * Stirling2(n-k,k)/(n-k)!.

A356820 Expansion of e.g.f. exp(-x * exp(3*x)).

Original entry on oeis.org

1, -1, -5, -10, 73, 1004, 5473, -15562, -746447, -9174088, -41916959, 823985546, 24629093641, 335144105828, 1248594602305, -67564407472426, -2160461588461343, -34957074099518608, -154556217713939903, 10500560586914149250, 409146670525578079801
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[-x Exp[3x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 13 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x*exp(3*x))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (-x)^k/(1-3*k*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (-1)^k*(3*k)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} (-x)^k / (1 - 3*k*x)^(k+1).
a(n) = Sum_{k=0..n} (-1)^k * (3*k)^(n-k) * binomial(n,k).
Showing 1-2 of 2 results.