cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356830 Number of vertex cuts in the n-prism graph.

Original entry on oeis.org

0, 2, 12, 88, 520, 2654, 12376, 54612, 232788, 970538, 3988644, 16239088, 65709280, 264814166, 1064414128, 4271035692, 17118683052, 68563527650, 274481537148, 1098506723080, 4395504614584, 17585769696206, 70352578566664, 281434319454084, 1125797816327940
Offset: 1

Views

Author

Eric W. Weisstein, Aug 30 2022

Keywords

Comments

Sequence extended to n = 1 using formula.

Crossrefs

Programs

  • Mathematica
    Table[4^n + 3 n - 3 n Fibonacci[n, 2] - LucasL[n, 2] - 2, {n, 20}]
    LinearRecurrence[{10, -35, 48, -11, -22, 7, 4}, {0, 2, 12, 88, 520, 2654, 12376}, 20]
    CoefficientList[Series[2 x (-1 + 4 x - 19 x^2 + 18 x^3 + 10 x^4 + 6 x^5)/((-1 + x)^2 (-1 + 4 x) (-1 + 2 x + x^2)^2), {x, 0, 20}], x]

Formula

a(n) = 2^(2*n) - A286182(n) - 1. - Pontus von Brömssen, Aug 30 2022
From Eric W. Weisstein, Aug 31 2022: (Start)
a(n) = 4^n + 3*n - 3*n*Fibonacci(n, 2) - Lucas(n, 2), where Fibonacci(n, 2) = A000129(n) and Lucas(n, 2) = A002203(n).
a(n) = 10*a(n-1) - 35*a(n-2) + 48*a(n-3) - 11*a(n-4) - 22*a(n-5) + 7*a(n-6) + 4*a(n-7).
G.f.: 2*x^2*(-1 + 4*x - 19*x^2 + 18*x^3 + 10*x^4 + 6*x^5)/((-1 + x)^2*(-1 + 4*x)*(-1 + 2*x + x^2)^2). (End)

Extensions

More terms from Pontus von Brömssen, Aug 30 2022