cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A356858 a(n) is the product of the first n numbers not divisible by 5.

Original entry on oeis.org

1, 1, 2, 6, 24, 144, 1008, 8064, 72576, 798336, 9580032, 124540416, 1743565824, 27897053184, 474249904128, 8536498274304, 162193467211776, 3406062811447296, 74933381851840512, 1723467782592331776, 41363226782215962624, 1075443896337615028224, 29036985201115605762048
Offset: 0

Views

Author

Stefano Spezia, Sep 01 2022

Keywords

Comments

Unlike the factorial number n!, a(n) does not have trailing zeros.

Crossrefs

Cf. A356859 (number of zero digits), A356860 (number of digits), A356861 (number of nonzero digits).

Programs

  • Mathematica
    Table[Product[Floor[(5k-1)/4], {k,n}], {n,0,22}] (* or *)
    Join[{1}, Table[Floor[(5n-1)/4]!/(Floor[Floor[(5n-1)/4]/5]!*5^Floor[Floor[(5n-1)/4]/5]), {n,22}]]
    Join[{1},FoldList[Times,Table[If[Mod[n,5]==0,Nothing,n],{n,30}]]] (* Harvey P. Dale, Nov 03 2024 *)
  • Python
    from math import prod
    def a(n): return prod((5*k-1)//4 for k in range(1, n+1))
    print([a(n) for n in range(23)]) # Michael S. Branicky, Sep 01 2022

Formula

a(n) = Product_{k=1..n} A047201(k).
a(n) = A047201(n)!/(floor(A047201(n)/5)!*5^floor(A047201(n)/5)) for n > 0.

A356860 a(n) is the number of digits in the product of the first n numbers not divisible by 5.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 26, 27, 29, 30, 32, 33, 35, 37, 38, 40, 41, 43, 45, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 64, 65, 67, 69, 71, 73, 74, 76, 78, 80, 82, 84, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103
Offset: 0

Views

Author

Stefano Spezia, Sep 01 2022

Keywords

Crossrefs

Cf. A356859 (number of zero digits), A356861 (number of nonzero digits).

Programs

  • Mathematica
    Table[Length[IntegerDigits[Product[Floor[(5i-1)/4], {i,n}]]], {n,0,68}]
    Join[{1},IntegerLength/@FoldList[Times,Table[If[Mod[n,5]==0,Nothing,n],{n,0,100}]]] (* Harvey P. Dale, Jul 20 2025 *)
  • Python
    from math import prod
    def a(n): return len(str(prod((5*k-1)//4 for k in range(1, n+1))))
    print([a(n) for n in range(69)]) # Michael S. Branicky, Sep 01 2022

Formula

a(n) = A055642(A356858(n)).

A356861 a(n) is the number of nonzero digits in the product of the first n numbers not divisible by 5.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 3, 5, 6, 5, 8, 10, 10, 11, 12, 15, 14, 16, 19, 20, 20, 19, 23, 24, 25, 27, 24, 27, 31, 32, 32, 34, 38, 36, 40, 41, 40, 44, 47, 43, 50, 52, 53, 50, 51, 56, 61, 60, 58, 63, 61, 64, 67, 72, 67, 70, 72, 76, 72, 78, 84, 83, 85, 84, 90, 91, 91, 90
Offset: 0

Views

Author

Stefano Spezia, Sep 01 2022

Keywords

Crossrefs

Cf. A356859 (number of zero digits), A356860 (number of digits).

Programs

  • Mathematica
    Table[Length[Select[IntegerDigits[Product[Floor[(5i-1)/4], {i,n}]], Positive]], {n,0,68}]
  • Python
    from math import prod
    def a(n): s = str(prod((5*k-1)//4 for k in range(1, n+1))); return len(s) - s.count("0")
    print([a(n) for n in range(69)]) # Michael S. Branicky, Sep 01 2022

Formula

a(n) = A055640(A356858(n)).

A358991 a(n) is the number of zero digits in the product of the first n odd numbers not divisible by 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 2, 1, 1, 2, 2, 3, 2, 2, 2, 3, 2, 4, 5, 2, 4, 1, 3, 4, 5, 6, 9, 5, 4, 6, 4, 7, 7, 10, 5, 7, 10, 8, 9, 8, 4, 7, 4, 15, 9, 4, 7, 12, 9, 8, 14, 12, 5, 14, 12, 6, 11, 10, 14, 17, 17, 11, 19, 11, 15, 19, 15, 13, 14, 11, 19
Offset: 0

Views

Author

Stefano Spezia, Dec 09 2022

Keywords

Crossrefs

Cf. A358992 (number of digits), A358993 (number of nonzero digits).

Programs

  • Mathematica
    Table[Count[IntegerDigits[Product[2i+2Floor[(i-3)/4]+1, {i, n}]], 0], {n, 0, 80}]

Formula

a(n) = A055641(A356990(n)).
Showing 1-4 of 4 results.