A357750 a(n) is the least k such that B(k^2) - B(k) = n, where B(m) is the binary weight A000120(m).
0, 5, 11, 21, 45, 75, 217, 331, 181, 789, 1241, 2505, 5701, 5221, 11309, 19637, 43151, 69451, 82709, 166027, 346389, 607307, 689685, 1458357, 1380917, 2507541, 5906699, 2965685, 5931189, 11862197, 47448787, 82188309, 57804981, 94905541, 188883211, 373457573, 640164021
Offset: 0
Examples
---------------------------------------------------- n k k^2 binary k binary k^2 ---------------------------------------------------- 0 0 0 0 0 1 5 25 101 11001 2 11 121 1011 1111001 3 21 441 10101 110111001 4 45 2025 101101 11111101001 5 75 5625 1001011 1010111111001 6 217 47089 11011001 1011011111110001 7 331 109561 101001011 11010101111111001 8 181 32761 10110101 111111111111001 9 789 622521 1100010101 10010111111110111001
Programs
-
PARI
a(n) = my(k=0); while(hammingweight(k^2) - hammingweight(k) != n, k++); k;
-
Python
from itertools import count def A357750(n): for k in count(0): if (k**2).bit_count()-k.bit_count()==n: return k # Chai Wah Wu, Oct 17 2022
Comments