cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356905 E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^x.

Original entry on oeis.org

1, 0, 2, 3, -4, -30, 294, 3780, -7904, -444528, 78840, 99657360, 539299848, -27852945120, -361237078944, 10124338180320, 258341121976320, -4020500134465920, -205187357182405824, 1330097523844832640, 186823640933648588160, 500469438126120583680
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; A[_] = 1;
    Do[A[x_] = (1/(1 - x)^x)^(1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n\2, (-k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(-x*log(1-x))^k/k!)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-x*log(1-x)))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-x*log(1-x)/lambertw(-x*log(1-x))))

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (-k+1)^(k-1) * |Stirling1(n-k,k)|/(n-k)!.
E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (-x * log(1-x))^k / k!.
E.g.f.: A(x) = exp( LambertW(-x * log(1-x)) ).
E.g.f.: A(x) = -x * log(1-x)/LambertW(-x * log(1-x)).

A356885 E.g.f. satisfies A(x)^(A(x)^2) = 1/(1 - x*A(x))^x.

Original entry on oeis.org

1, 0, 2, 3, -4, 30, 954, 6300, 6432, 424872, 18273960, 260682840, 1754408424, 47063118960, 2314149100704, 54798086299320, 773632032345600, 20746972036284480, 1072205580591921600, 36098491880448944640, 816375193722964932480, 25160238159364392336000
Offset: 0

Views

Author

Seiichi Manyama, Sep 02 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, (n-3*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (n-3*k+1)^(k-1) * |Stirling1(n-k,k)|/(n-k)!.
Showing 1-2 of 2 results.