A356910
E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^(x^2).
Original entry on oeis.org
1, 0, 0, 6, 12, 40, -180, -1512, -11760, 142560, 2701440, 37033920, -47472480, -7299227520, -181704466944, -904179830400, 40024286265600, 1774386897454080, 24426730612869120, -217650777809310720, -26326923875473536000, -662608157128469637120
Offset: 0
-
nmax = 21; A[_] = 1;
Do[A[x_] = ((1 - x)^(-x^2))^(1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = n!*sum(k=0, n\3, (-k+1)^(k-1)*abs(stirling(n-2*k, k, 1))/(n-2*k)!);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(-x^2*log(1-x))^k/k!)))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-x^2*log(1-x)))))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(-x^2*log(1-x)/lambertw(-x^2*log(1-x))))
A356911
E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^(x^3).
Original entry on oeis.org
1, 0, 0, 0, 24, 60, 240, 1260, -12096, -120960, -1144800, -11642400, 190270080, 4670265600, 81378198720, 1348668921600, -880532674560, -406217626214400, -13255586359142400, -343166884178227200, -3137937973466572800, 72862796986940620800
Offset: 0
-
nmax = 21; A[_] = 1;
Do[A[x_] = ((1 - x)^(-x^3))^(1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = n!*sum(k=0, n\4, (-k+1)^(k-1)*abs(stirling(n-3*k, k, 1))/(n-3*k)!);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(-x^3*log(1-x))^k/k!)))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-x^3*log(1-x)))))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(-x^3*log(1-x)/lambertw(-x^3*log(1-x))))
A356913
E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^(x^3/6).
Original entry on oeis.org
1, 0, 0, 0, 4, 10, 40, 210, 784, 5040, 40200, 369600, 5285280, 72072000, 1006889520, 14760345600, 210510263040, 3131345817600, 49229619129600, 818940523564800, 15054020163619200, 301204611031564800, 6455999452413772800, 146587705490513548800
Offset: 0
-
nmax = 23; A[_] = 1;
Do[A[x_] = ((1 - x)^(-x^3/6))^(1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = n!*sum(k=0, n\4, (-k+1)^(k-1)*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(-x^3/6*log(1-x))^k/k!)))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-x^3/6*log(1-x)))))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(-x^3/6*log(1-x)/lambertw(-x^3/6*log(1-x))))
A357243
E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^(1 - x).
Original entry on oeis.org
1, 1, -2, 6, -52, 540, -7608, 129304, -2612608, 60867360, -1608663840, 47527158624, -1552431588288, 55547889458880, -2160724031160576, 90782738645280000, -4097139872604807168, 197675862365363088384, -10153243488783257091072
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = ((1 - x)^(-1 + x))^(1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(-(1-x)*log(1-x))^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-(1-x)*log(1-x)))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-(1-x)*log(1-x)/lambertw(-(1-x)*log(1-x))))
A356906
E.g.f. satisfies A(x)^(A(x)^2) = 1/(1 - x)^x.
Original entry on oeis.org
1, 0, 2, 3, -28, -150, 2154, 26040, -322512, -7872984, 77570280, 3752301960, -22068935736, -2542757920560, 1422846762960, 2302464947491800, 14860063644794880, -2653728770258072640, -41790782141846648640, 3739260018343338345600
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (-2*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-2*k+1)^(k-1)*(-x*log(1-x))^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-2*x*log(1-x))/2)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((-2*x*log(1-x)/lambertw(-2*x*log(1-x)))^(1/2)))
Showing 1-5 of 5 results.