cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357247 E.g.f. satisfies A(x) * log(A(x)) = x * exp(-x).

Original entry on oeis.org

1, 1, -3, 13, -103, 1241, -19691, 384805, -8918351, 238966705, -7265920339, 247123552061, -9295263915191, 383095792217737, -17167554097899323, 831082449069928021, -43221681697593767071, 2403219105771778162529, -142263939562414917333155
Offset: 0

Views

Author

Seiichi Manyama, Sep 19 2022

Keywords

Crossrefs

Cf. A177885, A216857, A357243, A357246, A359759 (column 1).

Programs

  • Maple
    A357247 := n -> (-1)^(n - 1) * add(binomial(n, j) * (j - 1)^(j - 1) * j^(n - j), j = 0..n): seq(A357247(n), n = 0..18); # Peter Luschny, Jan 28 2023
  • Mathematica
    nmax = 20; A[_] = 1;
    Do[A[x_] = Exp[x/(Exp[x]*A[x])] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(x*exp(-x))^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x*exp(-x)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(x*exp(-x)/lambertw(x*exp(-x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=1, j, (-k)^(j-1)*binomial(j, k))*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

E.g.f. satisfies A(x) * log(A(x)) - x * exp(-x) = 0.
E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (x * exp(-x))^k / k!.
E.g.f.: A(x) = exp( LambertW(x * exp(-x)) ).
E.g.f.: A(x) = x * exp(-x)/LambertW(x * exp(-x)).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * A216857(k) * binomial(n-1,k-1) * a(n-k).
a(n) = (-1)^(n - 1) * Sum_{j=0..n} binomial(n, j) * (j - 1)^(j - 1) * j^(n - j). - Peter Luschny, Jan 28 2023
a(n) ~ -(-1)^n * sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (exp(n+1) * LambertW(exp(-1))^n). - Vaclav Kotesovec, Jan 28 2023

A357246 E.g.f. satisfies A(x) * log(A(x)) = (1-x) * (exp(x) - 1).

Original entry on oeis.org

1, 1, -2, 5, -49, 497, -6926, 116510, -2325422, 53538315, -1397740279, 40792008435, -1316056239994, 46509292766172, -1786748828967402, 74139054468535061, -3304409577659864305, 157444695280699565069, -7986085592316390890618, 429645521271113815480246
Offset: 0

Views

Author

Seiichi Manyama, Sep 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; A[_] = 1;
    Do[A[x_] = Exp[-(((Exp[x]-1)*(x-1))/A[x])]+O[x]^(nmax+1)//Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*((1-x)*(exp(x)-1))^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw((1-x)*(exp(x)-1)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((1-x)*(exp(x)-1)/lambertw((1-x)*(exp(x)-1))))

Formula

E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * ((1-x) * (exp(x) - 1))^k / k!.
E.g.f.: A(x) = exp( LambertW((1-x) * (exp(x) - 1)) ).
E.g.f.: A(x) = (1-x) * (exp(x) - 1)/LambertW((1-x) * (exp(x) - 1)).
Showing 1-2 of 2 results.