cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356888 a(n) = ((n-1)^2 + 2)*2^(n-2).

Original entry on oeis.org

1, 3, 12, 44, 144, 432, 1216, 3264, 8448, 21248, 52224, 125952, 299008, 700416, 1622016, 3719168, 8454144, 19070976, 42729472, 95158272, 210763776, 464519168, 1019215872, 2227175424, 4848615424, 10519314432, 22749904896, 49056579584, 105495134208, 226291089408
Offset: 1

Views

Author

Jack Hanke, Sep 02 2022

Keywords

Comments

a(n) is the number of fixed polyiamonds of minimal area 2*n-1 that touch each side of a triangle formed in the triangular lattice. n designates the number of triangles that touch each side of the larger triangle.

Examples

			a(3) = 12. Up to rotations and reflections there are 3 possibilities.
           *                     *                     *
          / \                   / \                   / \
         /   \                 /   \                 /   \
        *-----*               *-----*               *-----*
       / \   / \             / \   /#\             /#\   /#\
      /   \ /   \           /   \ /###\           /###\ /###\
     *-----*-----*         *-----*-----*         *-----*-----*
    /#\###/#\###/#\       /#\###/#\###/ \       / \###/#\###/ \
   /###\#/###\#/###\     /###\#/###\#/   \     /   \#/###\#/   \
  *-----*-----*-----*   *-----*-----*-----*   *-----*-----*-----*
		

Crossrefs

Cf. A334551.

Programs

  • Mathematica
    A356888[n_] := ((n-1)^2 + 2)*2^(n-2); Array[A356888, 30] (* or *)
    LinearRecurrence[{6, -12, 8}, {1, 3, 12}, 30] (* Paolo Xausa, Oct 07 2024 *)

Formula

G.f.: -x*(6*x^2-3*x+1)/(2*x-1)^3.
E.g.f.: (exp(2*x)*(3 - 2*x + 4*x^2) - 3)/4. - Stefano Spezia, Sep 02 2022