A356888 a(n) = ((n-1)^2 + 2)*2^(n-2).
1, 3, 12, 44, 144, 432, 1216, 3264, 8448, 21248, 52224, 125952, 299008, 700416, 1622016, 3719168, 8454144, 19070976, 42729472, 95158272, 210763776, 464519168, 1019215872, 2227175424, 4848615424, 10519314432, 22749904896, 49056579584, 105495134208, 226291089408
Offset: 1
Examples
a(3) = 12. Up to rotations and reflections there are 3 possibilities. * * * / \ / \ / \ / \ / \ / \ *-----* *-----* *-----* / \ / \ / \ /#\ /#\ /#\ / \ / \ / \ /###\ /###\ /###\ *-----*-----* *-----*-----* *-----*-----* /#\###/#\###/#\ /#\###/#\###/ \ / \###/#\###/ \ /###\#/###\#/###\ /###\#/###\#/ \ / \#/###\#/ \ *-----*-----*-----* *-----*-----*-----* *-----*-----*-----*
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Crossrefs
Cf. A334551.
Programs
-
Mathematica
A356888[n_] := ((n-1)^2 + 2)*2^(n-2); Array[A356888, 30] (* or *) LinearRecurrence[{6, -12, 8}, {1, 3, 12}, 30] (* Paolo Xausa, Oct 07 2024 *)
Formula
G.f.: -x*(6*x^2-3*x+1)/(2*x-1)^3.
E.g.f.: (exp(2*x)*(3 - 2*x + 4*x^2) - 3)/4. - Stefano Spezia, Sep 02 2022
Comments