cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jack Hanke

Jack Hanke's wiki page.

Jack Hanke has authored 2 sequences.

A356889 a(n) = (n^2 + 3*n + 10/3)*4^(n-3) - 1/3.

Original entry on oeis.org

3, 21, 125, 693, 3669, 18773, 93525, 456021, 2184533, 10310997, 48059733, 221599061, 1012225365, 4585772373, 20624790869, 92162839893, 409453548885, 1809612887381, 7960006055253, 34863681197397, 152099108509013, 661172992169301, 2864594294232405, 12373170851239253
Offset: 2

Author

Jack Hanke, Sep 02 2022

Keywords

Comments

a(n) is the number of fixed polyforms of minimal area (2*n)-1 that contain at least one triangle that touches each side of a triangle formed on a Kagome (trihexagonal) lattice. n is the number of triangles that touch each side of the larger triangle.

Examples

			a(3) = 21. Up to rotations and reflections, there are 5 possibilities:
.
            *                      *                      *
           / \                    / \                    / \
          *---*                  *---*                  *---*
         /     \                /     \                /     \
        *       *              *       *              *       *
       / \     / \            / \     / \            / \     /#\
      *---*---*---*          *---*---*---*          *---*---*---*
     /#####\ /#####\        /#####\#/#####\        /#####\ /#####\
    *#######*#######*      *#######*#######*      *#######*#######*
   /#\#####/#\#####/#\    /#\#####/ \#####/#\    /#\#####/#\#####/ \
  *---*---*---*---*---*  *---*---*---*---*---*  *---*---*---*---*---*
.
            *                      *
           / \                    / \
          *---*                  *---*
         /     \                /     \
        *       *              *       *
       /#\     /#\            / \     /#\
      *---*---*---*          *---*---*---*
     /#####\ /#####\        /#####\#/#####\
    *#######*#######*      *#######*#######*
   / \#####/#\#####/ \    /#\#####/ \#####/ \
  *---*---*---*---*---*  *---*---*---*---*---*
		

Crossrefs

Cf. A334551.

Programs

  • Mathematica
    Table[(n^2 + 3*n + 10/3)*4^(n-3) - 1/3, {n,2,25}] (* James C. McMahon, Jan 03 2024 *)

Formula

G.f.: x^2*(3 - 18*x + 32*x^2 - 8*x^3)/((1 - x)*(1 - 4*x)^3). - adapted to the offset by Stefano Spezia, Sep 03 2022
From Stefano Spezia, Sep 03 2022: (Start)
a(n) = (4^n*(10 + 3*n*(3 + n)) - 64)/192.
a(n) = 13*a(n-1) - 60*a(n-2) + 112*a(n-3) - 64*a(n-4) for n > 5. (End)

A356888 a(n) = ((n-1)^2 + 2)*2^(n-2).

Original entry on oeis.org

1, 3, 12, 44, 144, 432, 1216, 3264, 8448, 21248, 52224, 125952, 299008, 700416, 1622016, 3719168, 8454144, 19070976, 42729472, 95158272, 210763776, 464519168, 1019215872, 2227175424, 4848615424, 10519314432, 22749904896, 49056579584, 105495134208, 226291089408
Offset: 1

Author

Jack Hanke, Sep 02 2022

Keywords

Comments

a(n) is the number of fixed polyiamonds of minimal area 2*n-1 that touch each side of a triangle formed in the triangular lattice. n designates the number of triangles that touch each side of the larger triangle.

Examples

			a(3) = 12. Up to rotations and reflections there are 3 possibilities.
           *                     *                     *
          / \                   / \                   / \
         /   \                 /   \                 /   \
        *-----*               *-----*               *-----*
       / \   / \             / \   /#\             /#\   /#\
      /   \ /   \           /   \ /###\           /###\ /###\
     *-----*-----*         *-----*-----*         *-----*-----*
    /#\###/#\###/#\       /#\###/#\###/ \       / \###/#\###/ \
   /###\#/###\#/###\     /###\#/###\#/   \     /   \#/###\#/   \
  *-----*-----*-----*   *-----*-----*-----*   *-----*-----*-----*
		

Crossrefs

Cf. A334551.

Programs

  • Mathematica
    A356888[n_] := ((n-1)^2 + 2)*2^(n-2); Array[A356888, 30] (* or *)
    LinearRecurrence[{6, -12, 8}, {1, 3, 12}, 30] (* Paolo Xausa, Oct 07 2024 *)

Formula

G.f.: -x*(6*x^2-3*x+1)/(2*x-1)^3.
E.g.f.: (exp(2*x)*(3 - 2*x + 4*x^2) - 3)/4. - Stefano Spezia, Sep 02 2022