cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356892 E.g.f. satisfies log(A(x)) = x^3 * (exp(x * A(x)) - 1) * A(x).

Original entry on oeis.org

1, 0, 0, 0, 24, 60, 120, 210, 101136, 1089144, 7409520, 39917790, 4097460840, 100410712116, 1474154203704, 16356956618730, 786764261166240, 30867868254267120, 778327514455987296, 14658714575197061814, 522720977799308061240, 25075479032600008569900
Offset: 0

Views

Author

Seiichi Manyama, Sep 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 22; (* number of terms *)
    A[_] = 0;
    Do[A[x_] = Exp[x^3*(Exp[x*A[x]] - 1)*A[x]] + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x]*Range[0, m-1]! (* Jean-François Alcover, Sep 12 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\4, (n-2*k+1)^(k-1)*stirling(n-3*k, k, 2)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} (n-2*k+1)^(k-1) * Stirling2(n-3*k,k)/(n-3*k)!.