cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356916 Irregular triangle A(n, q) = total number of labeled P_4 - free chordal graphs on n vertices and q edges, read by rows; also companion triangle to A058865.

Original entry on oeis.org

1, 3, 3, 1, 6, 15, 8, 12, 6, 1, 10, 45, 60, 75, 60, 80, 30, 30, 10, 1, 15, 105, 275, 420, 516, 625, 465, 540, 495, 276, 255, 80, 60, 15, 1, 21, 210, 910, 2100, 3192, 4767, 5355, 4830, 5845, 5061, 5397, 4725, 2730, 2625, 1932, 882, 630, 175, 105, 21, 1
Offset: 1

Views

Author

G. C. Greubel, Sep 03 2022

Keywords

Examples

			The irregular triangle begins as:
   1;
   3,   3,   1;
   6,  15,   8,  12,   6,   1;
  10,  45,  60,  75,  60,  80,  30,  30,  10,   1;
  15, 105, 275, 420, 516, 625, 465, 540, 495, 276, 255, 80, 60, 15, 1;
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_]:= t[n, k]= If[k==Binomial[n, 2], 1, Sum[Binomial[n, j]*(A[n-j, k-j*(2*n -1-j)/2] - t[n-j, k-j*(2*n-1-j)/2]), {j, n-2}]]; (* t = A058865 *)
    A[n_, k_]:= A[n, k]= t[n, k] + Sum[Sum[Binomial[n-1, j-1]*t[j, m]*A[n-j, k-m], {j, n-1}], {m, 0, k}]; (* A = A356916 *)
    Table[A[n, k], {n,2,12}, {k,Binomial[n, 2]}]//Flatten
  • PARI
    A356916(n, q)={A058865(n, q) + sum(k=1, n-1, k*binomial(n, k)*sum(j=k-1, k*(k-1)/2, A058865(k, j)*A356916(n-k, q-j)))/n} \\ Edited: Code for A058865 should exist and be updated only there. - M. F. Hasler, Sep 26 2022
    vector(7, n, vector(binomial(n+1,2), k, A356916(n+1, k)))
    
  • SageMath
    @CachedFunction
    def t(n,k): # t = A058865
        if (k==binomial(n,2)): return 1
        else: return sum( binomial(n,j)*( A(n-j, k-j*(2*n-1-j)/2) - t(n-j, k-j*(2*n-1-j)/2) ) for j in (1..n-2) )
    @CachedFunction
    def A(n,k): # A = A356916
        return t(n,k) + sum(sum( binomial(n-1,j-1)*t(j,m)*A(n-j,k-m) for j in (1..n-1) ) for m in (0..k) )
    flatten([[A(n,k) for k in (1..binomial(n,2))] for n in (2..12)])

Formula

Let a(n, q) be the number of labeled connected P_4 - free chordal graphs on n vertices and q edges (see A058865), then:
a(n, q) = Sum_{k=1..n-2} binomial(n, k)*(A(n-k, q - k(2*n-1-k)/2) - a(n-k, q - k(2*n-1-k)/2)) for 1 <= q <= binomial(n,2), n >= 2, with a(n, binomial(n,2)) = 1.
A(n, q) = a(n, q) + Sum_{k = 1..n-1} binomial(n-1, k-1)*Sum_{j = k-1..min(k(k-1)/2, q)} a(k, j)*A(n-k, q-j).
A(n, binomial(n,2)) = 1, n >= 2.
A(n, 1) = A(n, binomial(n,2) - 1) = A000217(n-1), n >= 2.
A(n, 2) = 3*A000332(n+1), n >= 3.