A356916 Irregular triangle A(n, q) = total number of labeled P_4 - free chordal graphs on n vertices and q edges, read by rows; also companion triangle to A058865.
1, 3, 3, 1, 6, 15, 8, 12, 6, 1, 10, 45, 60, 75, 60, 80, 30, 30, 10, 1, 15, 105, 275, 420, 516, 625, 465, 540, 495, 276, 255, 80, 60, 15, 1, 21, 210, 910, 2100, 3192, 4767, 5355, 4830, 5845, 5061, 5397, 4725, 2730, 2625, 1932, 882, 630, 175, 105, 21, 1
Offset: 1
Examples
The irregular triangle begins as: 1; 3, 3, 1; 6, 15, 8, 12, 6, 1; 10, 45, 60, 75, 60, 80, 30, 30, 10, 1; 15, 105, 275, 420, 516, 625, 465, 540, 495, 276, 255, 80, 60, 15, 1;
Links
- G. C. Greubel, Rows n = 2..30 of the irregular triangle, flattened
- R. Castelo and N. C. Wormald, Enumeration of P4-free chordal graphs.
- R. Castelo and N. C. Wormald, Enumeration of P4-Free chordal graphs, Graphs and Combinatorics, 19:467-474, 2003.
- M. C. Golumbic, Trivially perfect graphs, Discr. Math. 24(1) (1978), 105-107.
- T. H. Ma and J. P. Spinrad, Cycle-free partial orders and chordal comparability graphs, Order, 1991, 8:49-61.
- E. S. Wolk, A note on the comparability graph of a tree, Proc. Am. Math. Soc., 1965, 16:17-20.
Programs
-
Mathematica
t[n_, k_]:= t[n, k]= If[k==Binomial[n, 2], 1, Sum[Binomial[n, j]*(A[n-j, k-j*(2*n -1-j)/2] - t[n-j, k-j*(2*n-1-j)/2]), {j, n-2}]]; (* t = A058865 *) A[n_, k_]:= A[n, k]= t[n, k] + Sum[Sum[Binomial[n-1, j-1]*t[j, m]*A[n-j, k-m], {j, n-1}], {m, 0, k}]; (* A = A356916 *) Table[A[n, k], {n,2,12}, {k,Binomial[n, 2]}]//Flatten
-
PARI
A356916(n, q)={A058865(n, q) + sum(k=1, n-1, k*binomial(n, k)*sum(j=k-1, k*(k-1)/2, A058865(k, j)*A356916(n-k, q-j)))/n} \\ Edited: Code for A058865 should exist and be updated only there. - M. F. Hasler, Sep 26 2022 vector(7, n, vector(binomial(n+1,2), k, A356916(n+1, k)))
-
SageMath
@CachedFunction def t(n,k): # t = A058865 if (k==binomial(n,2)): return 1 else: return sum( binomial(n,j)*( A(n-j, k-j*(2*n-1-j)/2) - t(n-j, k-j*(2*n-1-j)/2) ) for j in (1..n-2) ) @CachedFunction def A(n,k): # A = A356916 return t(n,k) + sum(sum( binomial(n-1,j-1)*t(j,m)*A(n-j,k-m) for j in (1..n-1) ) for m in (0..k) ) flatten([[A(n,k) for k in (1..binomial(n,2))] for n in (2..12)])
Formula
Let a(n, q) be the number of labeled connected P_4 - free chordal graphs on n vertices and q edges (see A058865), then:
a(n, q) = Sum_{k=1..n-2} binomial(n, k)*(A(n-k, q - k(2*n-1-k)/2) - a(n-k, q - k(2*n-1-k)/2)) for 1 <= q <= binomial(n,2), n >= 2, with a(n, binomial(n,2)) = 1.
A(n, q) = a(n, q) + Sum_{k = 1..n-1} binomial(n-1, k-1)*Sum_{j = k-1..min(k(k-1)/2, q)} a(k, j)*A(n-k, q-j).
A(n, binomial(n,2)) = 1, n >= 2.
A(n, 1) = A(n, binomial(n,2) - 1) = A000217(n-1), n >= 2.
A(n, 2) = 3*A000332(n+1), n >= 3.