A356919 Number of partitions of n into 5 parts that divide n.
0, 0, 0, 0, 1, 1, 0, 2, 1, 2, 0, 8, 0, 1, 3, 3, 0, 6, 0, 6, 1, 0, 0, 20, 1, 0, 1, 2, 0, 14, 0, 3, 0, 0, 1, 20, 0, 0, 0, 11, 0, 8, 0, 0, 5, 0, 0, 26, 0, 2, 0, 0, 0, 7, 1, 4, 0, 0, 0, 41, 0, 0, 2, 3, 1, 2, 0, 0, 0, 5, 0, 35, 0, 0, 3, 0, 0, 2, 0, 12, 1, 0, 0, 25, 1, 0, 0, 2, 0, 23, 0, 0, 0, 0, 1, 27, 0, 1, 1, 7, 0, 1, 0, 2, 4
Offset: 1
Keywords
Examples
a(12) = 8; there are 8 ways to write 12 as the sum of 5 divisors of 12: 6+3+1+1+1 = 6+2+2+1+1 = 4+4+2+1+1 = 4+3+3+1+1 = 4+3+2+2+1 = 4+2+2+2+2 = 3+3+3+2+1 = 3+3+2+2+2.
Links
Crossrefs
Cf. A355641.
Programs
-
PARI
A356919(n, x=n, y=n, nparts=5) = if(0==nparts, (0==y), if(y<=0, 0, sumdiv(n, d, if((d<=x), A356919(n, d, y-d, nparts-1))))); \\ Antti Karttunen, Jan 13 2025
Formula
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} c(n/l) * c(n/k) * c(n/j) * c(n/i) * c(n/(n-i-j-k-l)), where c(n) = 1 - ceiling(n) + floor(n).
Extensions
More terms from Antti Karttunen, Jan 13 2025