cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356933 Number of multisets of multisets, each of odd size, whose multiset union is a size-n multiset covering an initial interval.

Original entry on oeis.org

1, 1, 2, 8, 28, 108, 524, 2608, 14176, 86576, 550672, 3782496, 27843880, 214071392, 1751823600, 15041687664, 134843207240, 1269731540864, 12427331494304, 126619822952928, 1341762163389920, 14712726577081248, 167209881188545344, 1963715680476759040, 23794190474350155856
Offset: 0

Views

Author

Gus Wiseman, Sep 08 2022

Keywords

Examples

			The a(4) = 28 multiset partitions:
  {1}{111}      {1}{112}      {1}{123}      {1}{234}
  {1}{1}{1}{1}  {1}{122}      {1}{223}      {2}{134}
                {1}{222}      {1}{233}      {3}{124}
                {2}{111}      {2}{113}      {4}{123}
                {2}{112}      {2}{123}      {1}{2}{3}{4}
                {2}{122}      {2}{133}
                {1}{1}{1}{2}  {3}{112}
                {1}{1}{2}{2}  {3}{122}
                {1}{2}{2}{2}  {3}{123}
                              {1}{1}{2}{3}
                              {1}{2}{2}{3}
                              {1}{2}{3}{3}
		

Crossrefs

A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A011782 counts multisets covering an initial interval.
Odd-size multisets are counted by A000302, A027193, A058695, ranked by A026424.
Other conditions: A034691, A116540, A255906, A356937, A356942.
Other types: A050330, A356932, A356934, A356935.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],OddQ[Times@@Length/@#]&]],{n,0,5}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    R(n,k) = {EulerT(vector(n, j, if(j%2 == 1, binomial(j+k-1, j))))}
    seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 01 2023