cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356969 A(n, k) is the sum of the terms in common in the dual Zeckendorf representations of n and of k; square array A(n, k) read by antidiagonals, n, k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 0, 2, 2, 4, 2, 2, 0, 0, 0, 1, 2, 3, 3, 3, 3, 2, 1, 0, 0, 1, 2, 2, 4, 5, 4, 2, 2, 1, 0, 0, 0, 0, 3, 0, 5, 5, 0, 3, 0, 0, 0, 0, 1, 2, 1, 1, 2, 6, 2, 1, 1, 2, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Sep 06 2022

Keywords

Comments

The dual Zeckendorf representation corresponds to the lazy Fibonacci representation.
See A334348 for the sequence dealing with Zeckendorf (or greedy Fibonacci) representations. Unlike A334348, the present sequence is not associative.

Examples

			Square array A(n, k) begins:
  n\k|  0  1  2  3  4  5  6  7  8  9  10  11  12  13
  ---+----------------------------------------------
    0|  0  0  0  0  0  0  0  0  0  0   0   0   0   0
    1|  0  1  0  1  1  0  1  0  1  1   0   1   1   0
    2|  0  0  2  2  0  2  2  2  2  0   2   2   0   2
    3|  0  1  2  3  1  2  3  2  3  1   2   3   1   2
    4|  0  1  0  1  4  3  4  0  1  4   3   4   4   3
    5|  0  0  2  2  3  5  5  2  2  3   5   5   3   5
    6|  0  1  2  3  4  5  6  2  3  4   5   6   4   5
    7|  0  0  2  2  0  2  2  7  7  5   7   7   0   2
    8|  0  1  2  3  1  2  3  7  8  6   7   8   1   2
    9|  0  1  0  1  4  3  4  5  6  9   8   9   4   3
   10|  0  0  2  2  3  5  5  7  7  8  10  10   3   5
   11|  0  1  2  3  4  5  6  7  8  9  10  11   4   5
   12|  0  1  0  1  4  3  4  0  1  4   3   4  12  11
   13|  0  0  2  2  3  5  5  2  2  3   5   5  11  13
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A(n, k) = A022290(A003754(n+1) AND A003754(k+1)) (where AND denotes the bitwise AND operator, A004198).
A(n, k) = A(k, n).
A(n, 0) = 0.
A(n, n) = n.