cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357033 a(n) is the smallest number that has exactly n divisors that are cyclops numbers (A134808).

Original entry on oeis.org

1, 101, 202, 404, 606, 1212, 2424, 7272, 21816, 41208, 84048, 123624, 144144, 336336, 288288, 504504, 432432, 865368, 864864, 1009008, 2378376, 1729728, 3459456, 3027024, 4756752, 6054048, 9081072, 11099088, 12108096, 16648632, 23207184, 29405376, 36324288
Offset: 0

Views

Author

Marius A. Burtea, Sep 20 2022

Keywords

Examples

			The divisors of 101 are 1 and 101. Of those, only 101 is a cyclops number; it is the smallest cyclops number, so a(1) = 101.
The divisors of 202 are 1, 2, 101, and 202, the cyclops numbers being 101 and 202, so a(2) = 202.
The divisors of 404 are 1, 2, 4, 101, 202, and 404, the cyclops numbers being 101, 202 and 404, so a(3) = 404.
		

Crossrefs

Cf. A134808.

Programs

  • Magma
    ints:=func; cyc:=func; a:=[]; for n in [0..32]  do k:=1; while #[s:s in Divisors(k)| cyc(s)] ne n do k:=k+1; end while; Append(~a,k); end for; a;
  • Maple
    L:= Vector(10^8):
    C:= [0]:
    for d from 3 to 7 by 2 do
      C:= [seq(seq(seq(a*10^(d-1)+10*b+c,c=1..9),b=C),a=1..9)];
      for x in C do
        Mx:= [seq(i,i=x..10^8,x)];
        L[Mx]:= map(`+`,L[Mx],1)
      od;
    od:
    V:= Array(0..max(L)):
    for n from 1 to 10^8 do
      if V[L[n]] = 0 then V[L[n]]:= n; fi
    od:
    if member(0,V,'k') then convert(V[0..k-1],list)
    else convert(V,list)
    fi; # Robert Israel, Sep 20 2022
  • Mathematica
    cyclopQ[n_] := Module[{d = IntegerDigits[n], len}, OddQ[len = Length[d]] && Position[d, 0] == {{(len + 1)/2}}]; f[n_] := DivisorSum[n, 1 &, cyclopQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[10, 10^5] (* Amiram Eldar, Sep 26 2022 *)