cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357041 a(n) = Sum_{d|n} 2^(d-1) * binomial(d+n/d-1,d).

Original entry on oeis.org

1, 4, 7, 18, 21, 66, 71, 196, 305, 648, 1035, 2526, 4109, 8774, 16875, 34288, 65553, 134860, 262163, 531506, 1051237, 2109594, 4194327, 8425348, 16779257, 33611984, 67123631, 134350206, 268435485, 537178750, 1073741855, 2148064768, 4295048345, 8591114580
Offset: 1

Views

Author

Seiichi Manyama, Feb 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(#-1) * Binomial[# + n/# - 1, #] &]; Array[a, 50] (* Amiram Eldar, Jul 31 2023 *)
  • PARI
    a(n) = sumdiv(n, d, 2^(d-1)*binomial(d+n/d-1, d));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (1/(1-2*x^k)^k-1))/2)
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (2*x)^k/(1-x^k)^(k+1))/2)
    
  • Python
    from math import comb
    from sympy import divisors
    def A357041(n): return sum(comb(d+n//d-1,d)<Chai Wah Wu, Feb 27 2023

Formula

G.f.: (1/2) * Sum_{k>0} (1/(1 - 2 * x^k)^k - 1).
G.f.: (1/2) * Sum_{k>0} (2 * x)^k/(1 - x^k)^(k+1).
If p is prime, a(p) = p + 2^(p-1).