cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357101 Decimal expansion of the real root of x^3 - 2*x^2 - 2.

Original entry on oeis.org

2, 3, 5, 9, 3, 0, 4, 0, 8, 5, 9, 7, 1, 7, 7, 6, 4, 2, 0, 7, 3, 0, 6, 6, 0, 3, 9, 2, 8, 0, 0, 5, 3, 2, 5, 5, 5, 3, 4, 6, 4, 8, 1, 2, 7, 8, 0, 6, 7, 6, 7, 2, 2, 8, 3, 7, 9, 7, 1, 4, 1, 2, 5, 1, 5, 8, 3, 8, 7, 5, 5, 8, 8, 9, 4, 4, 6, 5
Offset: 1

Views

Author

Wolfdieter Lang, Sep 20 2022

Keywords

Comments

This equals r0 + 2/3 where r0 is the real root of y^3 - (4/3)*y - 70/27.
The other two roots are (w1*(35 + 3*sqrt(129))^(1/3) + w2*(35 - 3*sqrt(129))^(1/3) + 2)/3 = -0.1796520429... + 0.9030131458...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1.
Using hyperbolic functions these roots are (2/3)*(1 - cosh((1/3)*arccosh(35/8)) + sqrt(3)*sinh((1/3)*arccosh(35/8))*i), and its complex conjugate.

Examples

			2.359304085971776420730660392800532555346481278067672283797141251583875588...
		

Crossrefs

Cf. A058265 - 1 (x^3 + 2*x^2 - 2).

Programs

  • Maple
    h := ((35 + 3*sqrt(129))/8)^(1/3): evalf((1 + h + 1/h)*2/3, 82); # Peter Luschny, Sep 25 2022
  • Mathematica
    RealDigits[x /. FindRoot[x^3 - 2*x^2 - 2, {x, 2}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Sep 21 2022 *)
  • PARI
    polrootsreal(x^3 - 2*x^2 - 2)[1] \\ Michel Marcus, Sep 23 2022

Formula

r = ((35 + 3*sqrt(129))^(1/3) + 4*(35 + 3*sqrt(129))^(-1/3) + 2)/3.
r = ((35 + 3*sqrt(129))^(1/3) + (35 - 3*sqrt(129))^(1/3) + 2)/3.
r = (2/3)*(2*cosh((1/3)*arccosh(35/8)) + 1).