A357114 T(n,m) is the denominator of the resistance between two diametrically opposite nodes of a rectangular electric network of n*m quadratic meshes in which all edges are replaced by one-ohm resistors, where T(n,m) is a triangle read by rows.
1, 5, 2, 8, 69, 7, 19, 209, 1023, 22, 15, 440, 16744, 1205, 495, 71, 2639, 128617, 4282081, 1169441, 2494, 112, 11067, 21728, 59292739, 3498175408, 287916805961, 360161, 265, 4142, 5317209, 579080689, 43600867640, 9153575734849, 273893674761, 153254
Offset: 1
Examples
The triangle begins: 1; 7/5, 3/2; 15/8, 121/69, 13/7; 45/19, 430/209, 2089/1023, 47/22; 43/15, 1047/440, 37873/16744, 2749/1205, 1171/495
Links
- MingKun Yue, Rows n=1..24 of triangle, flattened
Crossrefs
A357113 are the corresponding numerators.
Programs
-
Mathematica
ResistanceDistance[g_Graph,i_Integer,j_Integer]:=Module[{n=VertexCount[g]},ResistanceDistanceMatrix=PseudoInverse[KirchhoffMatrix[g]+ConstantArray[1/n,{n,n}]];ResistanceDistanceMatrix[[i,i]]+ResistanceDistanceMatrix[[j,j]]-ResistanceDistanceMatrix[[i,j]]-ResistanceDistanceMatrix[[j,i]]]; a[n_Integer,m_Integer]:=ResistanceDistance[GridGraph[{n,m}],1,n*m]; Denominator[Flatten[Table[a[n,m],{n,2,10},{m,2,n}]]] (* MingKun Yue, Jan 25 2025 *)