cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357114 T(n,m) is the denominator of the resistance between two diametrically opposite nodes of a rectangular electric network of n*m quadratic meshes in which all edges are replaced by one-ohm resistors, where T(n,m) is a triangle read by rows.

Original entry on oeis.org

1, 5, 2, 8, 69, 7, 19, 209, 1023, 22, 15, 440, 16744, 1205, 495, 71, 2639, 128617, 4282081, 1169441, 2494, 112, 11067, 21728, 59292739, 3498175408, 287916805961, 360161, 265, 4142, 5317209, 579080689, 43600867640, 9153575734849, 273893674761, 153254
Offset: 1

Views

Author

Hugo Pfoertner, Sep 15 2022

Keywords

Examples

			The triangle begins:
   1;
   7/5,       3/2;
  15/8,     121/69,      13/7;
  45/19,   430/209,   2089/1023,     47/22;
  43/15,  1047/440,  37873/16744,  2749/1205,  1171/495
		

Crossrefs

A357113 are the corresponding numerators.

Programs

  • Mathematica
    ResistanceDistance[g_Graph,i_Integer,j_Integer]:=Module[{n=VertexCount[g]},ResistanceDistanceMatrix=PseudoInverse[KirchhoffMatrix[g]+ConstantArray[1/n,{n,n}]];ResistanceDistanceMatrix[[i,i]]+ResistanceDistanceMatrix[[j,j]]-ResistanceDistanceMatrix[[i,j]]-ResistanceDistanceMatrix[[j,i]]]; a[n_Integer,m_Integer]:=ResistanceDistance[GridGraph[{n,m}],1,n*m]; Denominator[Flatten[Table[a[n,m],{n,2,10},{m,2,n}]]] (* MingKun Yue, Jan 25 2025 *)