cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357127 a(n) = A081257(n) if A081257(n) > n, otherwise a(n) = 1.

Original entry on oeis.org

7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 1, 307, 1, 127, 421, 463, 1, 79, 601, 31, 37, 757, 271, 67, 1, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 1, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163, 3541, 523, 97, 3907, 109, 73, 613
Offset: 2

Views

Author

Mohammed Bouras, Sep 13 2022

Keywords

Comments

All the primes in this sequence appear exactly twice.
The new primes encountered seem to match the terms of A256148 for n>1. Bill McEachen, Oct 13 2022

Examples

			a(2) = a(a(2) - 2 - 1) = a(7 - 2 - 1) = a(4).
a(3) = a(9) = 3 + 9 + 1 = 13.
a(5) = a(25) = gcd(5^2 + 5 + 1, 25^2 + 25 + 1) = 31.
		

Crossrefs

Programs

  • Python
    from sympy import primefactors
    def A357127(n): return m if (m:=max(primefactors(n*(n+1)+1))) > n else 1 # Chai Wah Wu, Oct 15 2022

Formula

Conjecture 1: If a(n) != 1, then a(n) = a(a(n) - n - 1).
Conjecture 2: If n != m and a(n) = a(m), then
a(n) = gcd(n^2 + n + 1, m^2 + m + 1) = n + m + 1.