cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A357135 Take the k-th composition in standard order for each part k of the n-th composition in standard order; then concatenate.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Triangle begins:
   0:
   1: 1
   2: 2
   3: 1 1
   4: 1 1
   5: 2 1
   6: 1 2
   7: 1 1 1
   8: 3
   9: 1 1 1
  10: 2 2
  11: 2 1 1
  12: 1 1 1
  13: 1 2 1
  14: 1 1 2
  15: 1 1 1 1
		

Crossrefs

See link for sequences related to standard compositions.
Row n is the A357134(n)-th composition in standard order.
The version for Heinz numbers of partitions is A357139, cf. A003963.
Row sums are A357186, differences A357187.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Join@@Table[Join@@stc/@stc[n],{n,0,30}]

Formula

Row n is the A357134(n)-th composition in standard order.

A357134 Take the k-th composition in standard order for each part k of the n-th composition in standard order; then set a(n) to be the index (in standard order) of the concatenation.

Original entry on oeis.org

0, 1, 2, 3, 3, 5, 6, 7, 4, 7, 10, 11, 7, 13, 14, 15, 5, 9, 14, 15, 11, 21, 22, 23, 12, 15, 26, 27, 15, 29, 30, 31, 6, 11, 18, 19, 15, 29, 30, 31, 20, 23, 42, 43, 23, 45, 46, 47, 13, 25, 30, 31, 27, 53, 54, 55, 28, 31, 58, 59, 31, 61, 62, 63, 7, 13, 22, 23, 19
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their corresponding standard compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   3: (1,1)
   5: (2,1)
   6: (1,2)
   7: (1,1,1)
   4: (3)
   7: (1,1,1)
  10: (2,2)
  11: (2,1,1)
   7: (1,1,1)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
		

Crossrefs

See link for sequences related to standard compositions.
The version for Heinz numbers of partitions is A003963.
The vertex-degrees are A048896.
The a(n)-th composition in standard order is row n of A357135.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Join@@stc/@stc[n]],{n,0,30}]

Formula

For n > 0, the value n appears A048896(n - 1) times.
Row a(n) of A066099 = row n of A357135.

A357187 First differences A357186 = "Take the k-th composition in standard order for each part k of the n-th composition in standard order, then add up everything.".

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, 1, 0, 0, -1, 0, 1, 0, -1, 1, 0, 0, -2, 1, 1, 0, -1, 1, 0, 0, 0, 0, 1, 0, -1, 1, 0, 0, -2, 1, 0, 0, 0, 1, 0, 0, -1, 0, 1, 0, -1, 1, 0, 0, -3, 1, 1, 0, 0, 1, 0, 0, -1, 0, 1, 0, -1, 1, 0, 0, -1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2022

Keywords

Comments

Are there any terms > 1?
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			We have A357186(5) - A357186(4) = 3 - 2 = 1, so a(4) = 1.
		

Crossrefs

See link for sequences related to standard compositions.
Positions of first appearances appear to all belong to A052955.
Differences of A357186 (row-sums of A357135).
The version for partitions is A357458, differences of A325033.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Differences[Table[stc/@stc[n]/.List->Plus,{n,0,100}]]

Formula

a(n) = A357186(n + 1) - A357186(n).

A357180 First run-length of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 87 in standard order is (2,2,1,1,1), so a(87) = 2.
		

Crossrefs

See link for sequences related to standard compositions.
For parts instead of run-lengths we have A065120, last A001511.
The version for Heinz numbers of partitions is A067029, last A071178.
This is the first part of row n of A333769.
For minimal instead of first we have A357138, maximal A357137.
The last instead of first run-length is A357181.
A051903 gives maximal part in prime signature.
A061395 gives maximal prime index.
A124767 counts runs in standard compositions.
A286470 gives maximal difference of prime indices.
A333766 gives maximal part of standard compositions, minimal A333768.
A353847 ranks run-sums of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,First[Length/@Split[stc[n]]]],{n,0,100}]

A357186 Take the k-th composition in standard order for each part k of the n-th composition in standard order, then add up everything.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 5, 5, 5, 4, 4, 5, 5, 4, 5, 5, 5, 3, 4, 5, 5, 4, 5, 5, 5, 5, 5, 6, 6, 5, 6, 6, 6, 4, 5, 5, 5, 5, 6, 6, 6, 5, 5, 6, 6, 5, 6, 6, 6, 3, 4, 5, 5, 5, 6, 6, 6, 5, 5, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 7, 7
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 92 in standard order is (2,1,1,3), with compositions ((2),(1),(1),(1,1)) so a(92) = 2 + 1 + 1 + 1 + 1 = 6.
		

Crossrefs

See link for sequences related to standard compositions.
This is the sum of A029837 over the n-th composition in standard order.
Vertex degrees are A133494.
The version for Heinz numbers of partitions is A325033.
Row sums of A357135.
First differences are A357187.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[stc/@stc[n]/.List->Plus,{n,0,100}]

Formula

a(n) = A029837(A357134(n)).

A357138 Minimal run-length of the n-th composition in standard order; a(0) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 18 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 92 in standard order is (2,1,1,3), so a(92) = 1.
		

Crossrefs

See link for more sequences related to standard compositions.
The version for Heinz numbers of partitions is A051904, for parts A055396.
For parts instead of run-length we have A333768, maximal A333766.
The opposite (maximal) version is A357137.
For first instead of minimal we have A357180, last A357181.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Min[Length/@Split[stc[n]]]],{n,0,100}]

A357181 Last run-length of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 87 in standard order is (2,2,1,1,1), so a(87) = 3.
		

Crossrefs

See link for sequences related to standard compositions.
For parts instead of run-lengths we have A001511, first A065120.
For Heinz numbers of partitions we have A071178, first A067029.
This is the last part of row n of A333769.
For maximal instead of last we have A357137, minimal A357138.
The first instead of last run-length is A357180.
A051903 gives maximal part of prime signature.
A061395 gives maximal prime index.
A124767 counts runs in standard compositions.
A286470 gives maximal difference of prime indices.
A333766 gives maximal part of standard composition, minimal A333768.
A353847 ranks run-sums of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Last[Length/@Split[stc[n]]]],{n,0,100}]

A358330 By concatenating the standard compositions of each part of the a(n)-th standard composition, we get a weakly increasing sequence.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 18, 19, 24, 25, 26, 28, 30, 31, 32, 36, 38, 39, 40, 42, 50, 51, 56, 57, 58, 60, 62, 63, 64, 72, 73, 74, 76, 78, 79, 96, 100, 102, 103, 104, 106, 114, 115, 120, 121, 122, 124, 126, 127, 128, 129, 130, 136, 146, 147
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2022

Keywords

Comments

Note we shorten the language, "the k-th composition in standard order," to "the standard composition of k."
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their standard compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   6: (1,2)
   7: (1,1,1)
   8: (4)
   9: (3,1)
  10: (2,2)
  12: (1,3)
  14: (1,1,2)
  15: (1,1,1,1)
  18: (3,2)
  19: (3,1,1)
  24: (1,4)
  25: (1,3,1)
  26: (1,2,2)
For example, the 532,488-th composition is (6,10,4), with standard compositions ((1,2),(2,2),(3)), with weakly increasing concatenation (1,2,2,2,3), so 532,488 is in the sequence.
		

Crossrefs

See link for sequences related to standard compositions.
Standard compositions are listed by A066099.
Indices of rows of A357135 (ranked by A357134) that are weakly increasing.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],OrderedQ[Join@@stc/@stc[#]]&]

A358333 By concatenating the standard compositions for each part of the n-th standard composition, we get a sequence of length a(n). Row-lengths of A357135.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 1, 3, 2, 3, 3, 3, 3, 4, 2, 2, 3, 4, 3, 3, 3, 4, 2, 4, 3, 4, 4, 4, 4, 5, 2, 3, 2, 3, 4, 4, 4, 5, 2, 4, 3, 4, 4, 4, 4, 5, 3, 3, 4, 5, 4, 4, 4, 5, 3, 5, 4, 5, 5, 5, 5, 6, 3, 3, 3, 4, 3, 3, 3, 4, 3, 5, 4, 5, 5, 5, 5, 6, 3, 3, 4, 5, 4, 4, 4
Offset: 0

Views

Author

Gus Wiseman, Nov 10 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 92 in standard order is (2,1,1,3), with compositions ((2),(1),(1),(1,1)) so a(92) = 5.
		

Crossrefs

See link for sequences related to standard compositions (A066099).
Dominates A000120.
Row-lengths of A357135, which is ranked by A357134.
A related sequence is A358330.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Length/@Table[Join@@stc/@stc[n],{n,0,100}]

Formula

Sum of A000120 over row n of A066099.
Showing 1-9 of 9 results.