cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A357134 Take the k-th composition in standard order for each part k of the n-th composition in standard order; then set a(n) to be the index (in standard order) of the concatenation.

Original entry on oeis.org

0, 1, 2, 3, 3, 5, 6, 7, 4, 7, 10, 11, 7, 13, 14, 15, 5, 9, 14, 15, 11, 21, 22, 23, 12, 15, 26, 27, 15, 29, 30, 31, 6, 11, 18, 19, 15, 29, 30, 31, 20, 23, 42, 43, 23, 45, 46, 47, 13, 25, 30, 31, 27, 53, 54, 55, 28, 31, 58, 59, 31, 61, 62, 63, 7, 13, 22, 23, 19
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their corresponding standard compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   3: (1,1)
   5: (2,1)
   6: (1,2)
   7: (1,1,1)
   4: (3)
   7: (1,1,1)
  10: (2,2)
  11: (2,1,1)
   7: (1,1,1)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
		

Crossrefs

See link for sequences related to standard compositions.
The version for Heinz numbers of partitions is A003963.
The vertex-degrees are A048896.
The a(n)-th composition in standard order is row n of A357135.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Join@@stc/@stc[n]],{n,0,30}]

Formula

For n > 0, the value n appears A048896(n - 1) times.
Row a(n) of A066099 = row n of A357135.

A357137 Maximal run-length of the n-th composition in standard order; a(0) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 3, 5, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 3, 3, 4, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 3, 2
Offset: 0

Views

Author

Gus Wiseman, Sep 18 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 92 in standard order is (2,1,1,3), so a(92) = 2.
		

Crossrefs

See link for more sequences related to standard compositions.
The version for Heinz numbers of partitions is A051903, for parts A061395.
For parts instead of run-lengths we have A333766, minimal A333768.
The opposite (minimal) version is A357138.
For first instead of maximal we have A357180, last A357181.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Max[Length/@Split[stc[n]]]],{n,0,100}]

A357138 Minimal run-length of the n-th composition in standard order; a(0) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 18 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 92 in standard order is (2,1,1,3), so a(92) = 1.
		

Crossrefs

See link for more sequences related to standard compositions.
The version for Heinz numbers of partitions is A051904, for parts A055396.
For parts instead of run-length we have A333768, maximal A333766.
The opposite (maximal) version is A357137.
For first instead of minimal we have A357180, last A357181.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Min[Length/@Split[stc[n]]]],{n,0,100}]

A357181 Last run-length of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 87 in standard order is (2,2,1,1,1), so a(87) = 3.
		

Crossrefs

See link for sequences related to standard compositions.
For parts instead of run-lengths we have A001511, first A065120.
For Heinz numbers of partitions we have A071178, first A067029.
This is the last part of row n of A333769.
For maximal instead of last we have A357137, minimal A357138.
The first instead of last run-length is A357180.
A051903 gives maximal part of prime signature.
A061395 gives maximal prime index.
A124767 counts runs in standard compositions.
A286470 gives maximal difference of prime indices.
A333766 gives maximal part of standard composition, minimal A333768.
A353847 ranks run-sums of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Last[Length/@Split[stc[n]]]],{n,0,100}]
Showing 1-4 of 4 results.