A357160
Coefficients in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 2, 8, 24, 88, 313, 1187, 4549, 17898, 71324, 288365, 1177729, 4856051, 20178061, 84427850, 355375253, 1503849591, 6394015744, 27301536104, 117020066991, 503313598572, 2171633107742, 9396938664272, 40769489510945, 177313714453588, 772906669281227, 3376119803594888
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 24*x^4 + 88*x^5 + 313*x^6 + 1187*x^7 + 4549*x^8 + 17898*x^9 + 71324*x^10 + ...
such that
1 = ... + x^(-4)*(1 - 1/x^3)^(-1)/A(x)^2 + x^(-1)/A(x) + x^2*(1 - 1/x) + x^5*0*A(x) + x^8*(1 - x)^3*A(x)^2 + x^11*(1 - x^2)^4*A(x)^3 + ... + x^(3*n+2)*(1 - x^(n-1))^(n+1)*A(x)^n + ...
also
-A(x)^3 = ... + x^(-4)*(A(x) - 1/x^3)^(-1)*A(x)^2 + x^(-1)*A(x) + x^2*(A(x) - 1/x) + x^5*(A(x) - 1)^2/A(x) + x^8*(A(x) - x)^3/A(x)^2 + x^11*(A(x) - x^2)^4/A(x)^3 + ... + x^(3*n+2)*(A(x) - x^(n-1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0,n, A = concat(A,0);
A[#A] = polcoeff(1 - sum(n=-#A\3-2,#A\3+2, x^(3*n+2) * (1 - x^(n-1) +x*O(x^#A))^(n+1) * Ser(A)^n ),#A-2); );A[n+1]}
for(n=0,30, print1(a(n),", "))
A357161
Coefficients in the power series A(x) such that: A(x) = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 3, 15, 71, 378, 2087, 12006, 70910, 428021, 2627731, 16358961, 103027423, 655236314, 4202210514, 27145925685, 176474644608, 1153679423108, 7579526316199, 50017854059557, 331390828183765, 2203548061830875, 14700363755114949, 98363233394747546
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 71*x^4 + 378*x^5 + 2087*x^6 + 12006*x^7 + 70910*x^8 + 428021*x^9 + 2627731*x^10 + ...
such that
A(x) = ... + x^(-4)*(1 - 1/x^3)^(-1)/A(x)^2 + x^(-1)/A(x) + x^2*(1 - 1/x) + x^5*0*A(x) + x^8*(1 - x)^3*A(x)^2 + x^11*(1 - x^2)^4*A(x)^3 + ... + x^(3*n+2)*(1 - x^(n-1))^(n+1)*A(x)^n + ...
also
-A(x)^4 = ... + x^(-4)*(A(x) - 1/x^3)^(-1)*A(x)^2 + x^(-1)*A(x) + x^2*(A(x) - 1/x) + x^5*(A(x) - 1)^2/A(x) + x^8*(A(x) - x)^3/A(x)^2 + x^11*(A(x) - x^2)^4/A(x)^3 + ... + x^(3*n+2)*(A(x) - x^(n-1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0,n, A = concat(A,0);
A[#A] = polcoeff(Ser(A) - sum(n=-#A\3-2,#A\3+2, x^(3*n+2) * (1 - x^(n-1) +x*O(x^#A))^(n+1) * Ser(A)^n ),#A-2); );A[n+1]}
for(n=0,30, print1(a(n),", "))
A357162
Coefficients in the power series A(x) such that: A(x)^2 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 4, 25, 162, 1160, 8731, 68364, 550707, 4535402, 38012170, 323168946, 2780229079, 24158457026, 211721412339, 1869239684558, 16609750957942, 148431230687412, 1333134683364035, 12027524448579488, 108951760865234373, 990555733683233240, 9035754580314840475
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 25*x^3 + 162*x^4 + 1160*x^5 + 8731*x^6 + 68364*x^7 + 550707*x^8 + 4535402*x^9 + 38012170*x^10 + ...
such that
A(x)^2 = ... + x^(-4)*(1 - 1/x^3)^(-1)/A(x)^2 + x^(-1)/A(x) + x^2*(1 - 1/x) + x^5*0*A(x) + x^8*(1 - x)^3*A(x)^2 + x^11*(1 - x^2)^4*A(x)^3 + ... + x^(3*n+2)*(1 - x^(n-1))^(n+1)*A(x)^n + ...
also
-A(x)^5 = ... + x^(-4)*(A(x) - 1/x^3)^(-1)*A(x)^2 + x^(-1)*A(x) + x^2*(A(x) - 1/x) + x^5*(A(x) - 1)^2/A(x) + x^8*(A(x) - x)^3/A(x)^2 + x^11*(A(x) - x^2)^4/A(x)^3 + ... + x^(3*n+2)*(A(x) - x^(n-1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0,n, A = concat(A,0);
A[#A] = polcoeff(Ser(A)^2 - sum(n=-#A\3-2,#A\3+2, x^(3*n+2) * (1 - x^(n-1) +x*O(x^#A))^(n+1) * Ser(A)^n ),#A-2); );A[n+1]}
for(n=0,30, print1(a(n),", "))
A357163
Coefficients in the power series A(x) such that: A(x)^3 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 5, 38, 313, 2834, 27088, 269380, 2757797, 28872568, 307696566, 3326835855, 36403128996, 402370063992, 4485931975701, 50386112677647, 569624341701738, 6476615022560400, 74013180802610161, 849642206122063571, 9793310961240979983, 113297108937174512275
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 38*x^3 + 313*x^4 + 2834*x^5 + 27088*x^6 + 269380*x^7 + 2757797*x^8 + 28872568*x^9 + 307696566*x^10 + ...
such that
A(x)^3 = ... + x^(-4)*(1 - 1/x^3)^(-1)/A(x)^2 + x^(-1)/A(x) + x^2*(1 - 1/x) + x^5*0*A(x) + x^8*(1 - x)^3*A(x)^2 + x^11*(1 - x^2)^4*A(x)^3 + ... + x^(3*n+2)*(1 - x^(n-1))^(n+1)*A(x)^n + ...
also
-A(x)^6 = ... + x^(-4)*(A(x) - 1/x^3)^(-1)*A(x)^2 + x^(-1)*A(x) + x^2*(A(x) - 1/x) + x^5*(A(x) - 1)^2/A(x) + x^8*(A(x) - x)^3/A(x)^2 + x^11*(A(x) - x^2)^4/A(x)^3 + ... + x^(3*n+2)*(A(x) - x^(n-1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0,n, A = concat(A,0);
A[#A] = polcoeff(Ser(A)^3 - sum(n=-#A\3-2,#A\3+2, x^(3*n+2) * (1 - x^(n-1) +x*O(x^#A))^(n+1) * Ser(A)^n ),#A-2); );A[n+1]}
for(n=0,30, print1(a(n),", "))
A357164
Coefficients in the power series A(x) such that: A(x)^4 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 6, 54, 540, 5925, 68753, 830267, 10324947, 131329213, 1700614790, 22344117822, 297132512955, 3991542148276, 54086668396101, 738390401404546, 10146440406910223, 140227571720595241, 1947883865390758591, 27181029295364007844, 380838895427784827916
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 54*x^3 + 540*x^4 + 5925*x^5 + 68753*x^6 + 830267*x^7 + 10324947*x^8 + 131329213*x^9 + 1700614790*x^10 + ...
such that
A(x)^4 = ... + x^(-4)*(1 - 1/x^3)^(-1)/A(x)^2 + x^(-1)/A(x) + x^2*(1 - 1/x) + x^5*0*A(x) + x^8*(1 - x)^3*A(x)^2 + x^11*(1 - x^2)^4*A(x)^3 + ... + x^(3*n+2)*(1 - x^(n-1))^(n+1)*A(x)^n + ...
also
-A(x)^7 = ... + x^(-4)*(A(x) - 1/x^3)^(-1)*A(x)^2 + x^(-1)*A(x) + x^2*(A(x) - 1/x) + x^5*(A(x) - 1)^2/A(x) + x^8*(A(x) - x)^3/A(x)^2 + x^11*(A(x) - x^2)^4/A(x)^3 + ... + x^(3*n+2)*(A(x) - x^(n-1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0,n, A = concat(A,0);
A[#A] = polcoeff(Ser(A)^4 - sum(n=-#A\3-2,#A\3+2, x^(3*n+2) * (1 - x^(n-1) +x*O(x^#A))^(n+1) * Ser(A)^n ),#A-2); );A[n+1]}
for(n=0,30, print1(a(n),", "))
A357205
Coefficients in the power series A(x) such that: A(x)^5 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 5, 45, 453, 5072, 59964, 738449, 9365617, 121511799, 1605113475, 21514501261, 291880434822, 4000334186684, 55304105835751, 770323876417969, 10800108248187952, 152293211204657100, 2158477865404685913, 30732066480408276249, 439351185869943970405
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 453*x^4 + 5072*x^5 + 59964*x^6 + 738449*x^7 + 9365617*x^8 + 121511799*x^9 + 1605113475*x^10 + ...
such that
A(x)^5 = ... + x^(-2)*(1 - 1/x)^(-1)/A(x)^2 + x^(-1)/A(x) + (1 - x) + x*(1 - x^2)*A(x) + x^2*(1 - x^3)^3*A(x)^2 + x^3*(1 - x^4)^4*A(x)^3 + ... + x^n*(1 - x^(n+1))^(n+1)*A(x)^n + ...
also
-A(x)^8 = ... + x^(-2)*(A(x) - 1/x)^(-1)*A(x)^2 + x^(-1)*A(x) + (A(x) - x) + x*(A(x) - x^2)^2/A(x) + x^2*(A(x) - x^3)^3/A(x)^2 + x^3*(A(x) - x^4)^4/A(x)^3 + ... + x^n*(A(x) - x^(n+1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(Ser(A)^5 - sum(n=-#A-2, #A+2, x^(n) * (1 - x^(n+1) +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-6 of 6 results.
Comments