A355357
G.f. A(x) satisfies: x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
Original entry on oeis.org
1, 1, 1, 4, 7, 20, 43, 110, 262, 674, 1684, 4397, 11320, 29938, 78641, 210044, 559724, 1507563, 4060585, 11016027, 29919220, 81673846, 223307300, 612851316, 1684816018, 4645243490, 12829177587, 35513736868, 98465916370, 273531234027, 760966444416
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 7*x^4 + 20*x^5 + 43*x^6 + 110*x^7 + 262*x^8 + 674*x^9 + 1684*x^10 + 4397*x^11 + 11320*x^12 + ...
where
x = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 -+ ...
also,
x*P(x^2) = (1 - x^2*A(x))*(1 - 1/A(x)) * (1 - x^4*A(x))*(1 - x^2/A(x)) * (1 - x^6*A(x))*(1 - x^4/A(x)) * (1 - x^8*A(x))*(1 - x^6/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
-
(* Calculation of constants {d,c}: *) {1/r, Sqrt[-Log[r] * ((-1 + r) * QPochhammer[1/r, r^2] * (-2*Log[r] + (-1 + r)*(Log[1 - r^2] - Log[r - r^3]) + (-1 + r) * QPolyGamma[0, -1/2, r^2] - (-1 + r)*QPolyGamma[0, 1, r^2]) + 4*(-1 + r)^2 * r^2 * Log[r] * Derivative[0, 1][QPochhammer][1/r, r^2] + 2*r^3 * Log[r] * QPochhammer[1/r, r^2]^3 * Derivative[0, 1][QPochhammer][r^2, r^2]) / (Pi*r^2* QPochhammer[1/r, r^2] * (-4*r*Log[r]^2 + (-1 + r)^2 * QPolyGamma[1, -1/2, r^2]))]} /. FindRoot[ 1/QPochhammer[r^2] == (r*QPochhammer[1/r, r^2]^2)/(-1 + r)^2, {r, 1/3}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Feb 01 2024 *)
-
{a(n) = my(A=[1,1],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(n+4));
A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1));A[n+1]}
for(n=0,30,print1(a(n),", "))
A357221
Coefficients in the power series A(x) such that: x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
Original entry on oeis.org
1, 1, 2, 8, 26, 97, 361, 1399, 5532, 22318, 91387, 379037, 1588769, 6720065, 28645624, 122937300, 530748439, 2303446566, 10043922651, 43979954296, 193309569331, 852599816069, 3772220833468, 16737583785420, 74461239372631, 332062396407641, 1484162266154404
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 26*x^4 + 97*x^5 + 361*x^6 + 1399*x^7 + 5532*x^8 + 22318*x^9 + 91387*x^10 + 379037*x^11 + 1588769*x^12 + ...
such that
x*A(x) = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 + ... + (-1)^n * x^(n*(n+1)) * A(x)^n + ...
-
{a(n,p=1) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( x*Ser(A)^p - sum(m=-ceil(sqrt(n+1)), ceil(sqrt(n+1)), (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357222
Coefficients in the power series A(x) such that: x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
Original entry on oeis.org
1, 1, 3, 15, 73, 391, 2180, 12620, 75056, 456004, 2817879, 17656517, 111919061, 716379379, 4623944175, 30062540989, 196692237527, 1294112710358, 8556766562091, 56829292404053, 378936456243142, 2535866861527016, 17025875430611442, 114654511539186113
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 73*x^4 + 391*x^5 + 2180*x^6 + 12620*x^7 + 75056*x^8 + 456004*x^9 + 2817879*x^10 + ...
such that
x*A(x)^2 = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 + ... + (-1)^n * x^(n*(n+1)) * A(x)^n + ...
-
{a(n,p=2) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( x*Ser(A)^p - sum(m=-ceil(sqrt(n)), ceil(sqrt(n)), (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357223
Coefficients in the power series A(x) such that: x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
Original entry on oeis.org
1, 1, 4, 25, 164, 1177, 8887, 69748, 563232, 4649672, 39063521, 332904462, 2870862974, 25005954906, 219675658337, 1944131038267, 17316793719372, 155122164103293, 1396584226654493, 12630315100857638, 114687815080027358, 1045218902425525155, 9557367319452886097
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 25*x^3 + 164*x^4 + 1177*x^5 + 8887*x^6 + 69748*x^7 + 563232*x^8 + 4649672*x^9 + 39063521*x^10 + ...
such that
x*A(x)^3 = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 + ... + (-1)^n * x^(n*(n+1)) * A(x)^n + ...
-
{a(n,p=3) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( x*Ser(A)^p - sum(m=-ceil(sqrt(n)), ceil(sqrt(n)), (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357224
Coefficients in the power series A(x) such that: x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
Original entry on oeis.org
1, 1, 5, 38, 315, 2855, 27325, 272030, 2788042, 29221793, 311767823, 3374650902, 36968040004, 409076635878, 4565873250981, 51342245169913, 581093383193700, 6614534942714496, 75675364150733073, 869713202188274489, 10036085000519702155, 116238137830534589525
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 38*x^3 + 315*x^4 + 2855*x^5 + 27325*x^6 + 272030*x^7 + 2788042*x^8 + 29221793*x^9 + 311767823*x^10 + ...
such that
x*A(x)^4 = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 + ... + (-1)^n * x^(n*(n+1)) * A(x)^n + ...
-
{a(n,p=4) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( x*Ser(A)^p - sum(m=-ceil(sqrt(n)), ceil(sqrt(n)), (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357226
Coefficients in the power series A(x) such that: x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
Original entry on oeis.org
1, 1, 7, 73, 861, 11112, 151822, 2159143, 31627140, 473909468, 7230035454, 111924733904, 1753728878625, 27759947012294, 443247756591472, 7130680715081049, 115466397372003479, 1880525144522628300, 30783524695736369568, 506215648672559259036, 8358521379108937920413
Offset: 0
G.f.: A(x) = 1 + x + 7*x^2 + 73*x^3 + 861*x^4 + 11112*x^5 + 151822*x^6 + 2159143*x^7 + 31627140*x^8 + 473909468*x^9 + 7230035454*x^10 + ...
such that
x*A(x)^6 = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 + ... + (-1)^n * x^(n*(n+1)) * A(x)^n + ...
-
{a(n,p=6) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( x*Ser(A)^p - sum(m=-ceil(sqrt(n)), ceil(sqrt(n)), (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-6 of 6 results.
Comments