cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357299 a(n) is the number of divisors of n whose first digit equals the first digit of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3
Offset: 1

Views

Author

Bernard Schott, Sep 23 2022

Keywords

Comments

Similar to A330348, but with last digit.
a(n) >= 1 because there is always a divisor that fits: n.
a(n) >= 2 for n>1 in A131835.

Examples

			The divisors of 26 that start in 2 are 2 and 26, so a(26) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := IntegerDigits[n][[1]]; a[n_] := DivisorSum[n, 1 &, f[#] == f[n] &]; Array[a, 100] (* Amiram Eldar, Sep 23 2022 *)
  • PARI
    a(n) = my(fd=digits(n)[1]); sumdiv(n, d, digits(d)[1] == fd); \\ Michel Marcus, Sep 23 2022
    
  • Python
    from sympy import divisors
    def a(n): f = str(n)[0]; return sum(1 for d in divisors(n) if str(d)[0]==f)
    print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Sep 23 2022