cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A355592 Positions of records in A357299: integers m such that the number of divisors whose first digit equals the first digit of m sets a new record.

Original entry on oeis.org

1, 10, 100, 108, 120, 180, 1008, 1260, 1680, 10010, 10080, 15120, 100320, 100800, 110880, 166320, 196560, 1003200, 1004640, 1005480, 1028160, 1053360, 1081080, 1441440, 1884960, 10024560, 10090080, 10533600, 10810800, 12252240, 17297280, 100069200, 100124640, 100212840, 100245600
Offset: 1

Views

Author

Bernard Schott, Sep 24 2022

Keywords

Comments

Observation: all terms start with the digit 1.
The corresponding records are: 1, 2, 3, 4, 5, 6, 10, 11, 12, ...
For even terms k we have A000005(k) >= 2*A357299(k). For 3 <= n <= 101, A000005(k) >= 3*A357299(k). - David A. Corneth, Sep 26 2022

Examples

			1008 is a term because A357299(1008) = 10, the ten corresponding divisors are {1, 12, 14, 16, 18, 112, 126, 144, 168, 1008} and 10 is larger than any earlier value in A357299.
		

Crossrefs

Cf. A342833 (with last digit).

Programs

  • Mathematica
    f[n_] := IntegerDigits[n][[1]]; s[n_] := Module[{fn = f[n]}, DivisorSum[n, 1 &, f[#] == fn &]]; seq = {}; sm = 0; Do[If[(sn = s[n]) > sm, sm = sn; AppendTo[seq, n]], {n, 1, 200000}]; seq (* Amiram Eldar, Sep 24 2022 *)
  • PARI
    f(n) = my(fd=digits(n)[1]); sumdiv(n, d, digits(d)[1] == fd); \\ A357299
    lista(nn) = my(r=0, x, list=List()); for (n=1, nn, if ((x=f(n)) > r, listput(list, n); r = x);); Vec(list); \\ Michel Marcus, Sep 24 2022
    
  • PARI
    upto(n) = { r = -1; res = List(); forfactored(i = 1, n, if(numdiv(i[2]) >= r, d = divisors(i[2]); t = i[1]\10^logint(i[1], 10); c = sum(j = 1, #d, d[j]\10^logint(d[j], 10) == t); if(c > r, r = c; listput(res, i[1]); ) ) ); res } \\ David A. Corneth, Sep 24 2022
    
  • Python
    from sympy import divisors
    from itertools import count, islice
    def b(n): f = str(n)[0]; return sum(1 for d in divisors(n) if str(d)[0]==f)
    def agen(): # generator of terms
        record = -1
        for m in count(1):
            v = b(m)
            if v > record: yield m; record = v
    print(list(islice(agen(), 17))) # Michael S. Branicky, Sep 24 2022

Extensions

More terms from Michel Marcus, Sep 24 2022

A206287 Numbers with all divisors starting with digit 1.

Original entry on oeis.org

1, 11, 13, 17, 19, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1111
Offset: 1

Views

Author

Jaroslav Krizek, Feb 12 2012

Keywords

Comments

Equivalently, integers m with all divisors starting with the same first digit of m; in fact, as 1 divides all the integers, this digit is necessarily 1; also, for these terms m: A357299(m) = A000005(m). - Bernard Schott, Sep 25 2022

Examples

			All divisors of 187 (1, 11, 17, 187) start with digit 1.
		

Crossrefs

Disjoint union of A045707 and A206288.
Cf. A004615 (with last digit)

Programs

  • Maple
    filter:= proc(n) andmap(t -> floor(t/10^ilog10(t)) = 1, numtheory:-divisors(n)) end proc:
    select(filter, [seq($10^d .. 2*10^d-1, d=0..3)]); # Robert Israel, Dec 25 2024
  • Mathematica
    fQ[n_] := Module[{d = Divisors[n]}, Union[IntegerDigits[#][[1]] & /@ d] == {1}]; Select[Range[1111], fQ] (* T. D. Noe, Feb 13 2012 *)

A357300 a(n) is the smallest number m with exactly n divisors whose first digit equals the first digit of m.

Original entry on oeis.org

1, 10, 100, 108, 120, 180, 1040, 1020, 1170, 1008, 1260, 1680, 10010, 10530, 10200, 10260, 10560, 10800, 11340, 10920, 12600, 10080, 15840, 18480, 15120, 102060, 104400, 101640, 100320, 102600, 100980, 117600, 114660, 107100, 174240, 113400, 105840, 100800, 120120, 143640
Offset: 1

Views

Author

Bernard Schott, Sep 23 2022

Keywords

Comments

a(m) <= a(551) = 18681062400 for m < 555. All terms with values up to 2*10^10 start with 1. Do there exist a(n) starting with any other digit? - Charles R Greathouse IV, Sep 25 2022

Examples

			Of the twelve divisors of 108, four have their first digit equals to the first digit of 108: 1, 12, 18 and 108, and there is no such smaller number, hence a(4) = 108.
		

Crossrefs

Cf. A335491 (with last digit), A206287, A355592, A357299.
Similar, but with: A333456 (Niven numbers), A335038 (Zuckerman numbers).

Programs

  • Mathematica
    f[n_] := IntegerDigits[n][[1]]; s[n_] := Module[{fn = f[n]}, DivisorSum[n, 1 &, f[#] == fn &]]; seq[len_, nmax_] := Module[{v = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = s[n]; If[i <= len && v[[i]] == 0, c++; v[[i]] = n]; n++]; v]; seq[40, 10^6] (* Amiram Eldar, Sep 23 2022 *)
  • PARI
    f(n) = my(fd=digits(n)[1]); sumdiv(n, d, digits(d)[1] == fd); \\ A357299
    a(n) = my(k=1); while (f(k)!=n, k++); k; \\ Michel Marcus, Sep 23 2022
    
  • PARI
    v=vector(1000); v[1]=r=1; forfactored(n=2, 10^11, t=a(n[1],n[2],r); if(t>r && v[t]==0, v[t]=n[1]; print(t" "n[1]" = "n[2]); while(v[r],r++); r--)) \\ Charles R Greathouse IV, Sep 25 2022

Extensions

More terms from Michel Marcus, Sep 23 2022

A356549 a(n) is the number of divisors of 10^n whose first digit is 1.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 15, 20, 25, 31, 38, 45, 52, 60, 69, 78, 88, 99, 110, 122, 135, 148, 161, 175, 190, 205, 221, 238, 255, 273, 292, 311, 330, 350, 371, 392, 414, 437, 460, 484, 509, 534, 559, 585, 612, 639, 667, 696, 725, 755, 786, 817, 848, 880, 913, 946, 980, 1015, 1050, 1086
Offset: 0

Views

Author

Michel Marcus, Sep 23 2022

Keywords

Examples

			The divisors of 1000 with initial digit 1 are: 1, 10, 100, 125 and 1000, so a(3)=5.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`((""||d)[1]="1", 1, 0), d=numtheory[divisors](10^n)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 23 2022
  • Mathematica
    a[n_] := DivisorSum[10^n, 1 &, IntegerDigits[#][[1]] == 1 &]; Array[a, 60, 0] (* Amiram Eldar, Sep 23 2022 *)
  • PARI
    a(n) = sumdiv(10^n, d, digits(d)[1] == 1);
    
  • Python
    from sympy import divisors
    def a(n): return sum(1 for d in divisors(10**n, generator=True) if str(d)[0]=="1")
    print([a(n) for n in range(60)]) # Michael S. Branicky, Sep 23 2022
    
  • Python
    def A356549(n): return n+1+sum(n-m+1 for m in range(1,n+2) for d in (2,5) if str(d**m).startswith('1')) # Chai Wah Wu, Sep 23 2022

Formula

a(n) = A357299(A011557(n)).
Showing 1-4 of 4 results.