cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357299 a(n) is the number of divisors of n whose first digit equals the first digit of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3
Offset: 1

Views

Author

Bernard Schott, Sep 23 2022

Keywords

Comments

Similar to A330348, but with last digit.
a(n) >= 1 because there is always a divisor that fits: n.
a(n) >= 2 for n>1 in A131835.

Examples

			The divisors of 26 that start in 2 are 2 and 26, so a(26) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := IntegerDigits[n][[1]]; a[n_] := DivisorSum[n, 1 &, f[#] == f[n] &]; Array[a, 100] (* Amiram Eldar, Sep 23 2022 *)
  • PARI
    a(n) = my(fd=digits(n)[1]); sumdiv(n, d, digits(d)[1] == fd); \\ Michel Marcus, Sep 23 2022
    
  • Python
    from sympy import divisors
    def a(n): f = str(n)[0]; return sum(1 for d in divisors(n) if str(d)[0]==f)
    print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Sep 23 2022

A206287 Numbers with all divisors starting with digit 1.

Original entry on oeis.org

1, 11, 13, 17, 19, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1111
Offset: 1

Views

Author

Jaroslav Krizek, Feb 12 2012

Keywords

Comments

Equivalently, integers m with all divisors starting with the same first digit of m; in fact, as 1 divides all the integers, this digit is necessarily 1; also, for these terms m: A357299(m) = A000005(m). - Bernard Schott, Sep 25 2022

Examples

			All divisors of 187 (1, 11, 17, 187) start with digit 1.
		

Crossrefs

Disjoint union of A045707 and A206288.
Cf. A004615 (with last digit)

Programs

  • Maple
    filter:= proc(n) andmap(t -> floor(t/10^ilog10(t)) = 1, numtheory:-divisors(n)) end proc:
    select(filter, [seq($10^d .. 2*10^d-1, d=0..3)]); # Robert Israel, Dec 25 2024
  • Mathematica
    fQ[n_] := Module[{d = Divisors[n]}, Union[IntegerDigits[#][[1]] & /@ d] == {1}]; Select[Range[1111], fQ] (* T. D. Noe, Feb 13 2012 *)

A355592 Positions of records in A357299: integers m such that the number of divisors whose first digit equals the first digit of m sets a new record.

Original entry on oeis.org

1, 10, 100, 108, 120, 180, 1008, 1260, 1680, 10010, 10080, 15120, 100320, 100800, 110880, 166320, 196560, 1003200, 1004640, 1005480, 1028160, 1053360, 1081080, 1441440, 1884960, 10024560, 10090080, 10533600, 10810800, 12252240, 17297280, 100069200, 100124640, 100212840, 100245600
Offset: 1

Views

Author

Bernard Schott, Sep 24 2022

Keywords

Comments

Observation: all terms start with the digit 1.
The corresponding records are: 1, 2, 3, 4, 5, 6, 10, 11, 12, ...
For even terms k we have A000005(k) >= 2*A357299(k). For 3 <= n <= 101, A000005(k) >= 3*A357299(k). - David A. Corneth, Sep 26 2022

Examples

			1008 is a term because A357299(1008) = 10, the ten corresponding divisors are {1, 12, 14, 16, 18, 112, 126, 144, 168, 1008} and 10 is larger than any earlier value in A357299.
		

Crossrefs

Cf. A342833 (with last digit).

Programs

  • Mathematica
    f[n_] := IntegerDigits[n][[1]]; s[n_] := Module[{fn = f[n]}, DivisorSum[n, 1 &, f[#] == fn &]]; seq = {}; sm = 0; Do[If[(sn = s[n]) > sm, sm = sn; AppendTo[seq, n]], {n, 1, 200000}]; seq (* Amiram Eldar, Sep 24 2022 *)
  • PARI
    f(n) = my(fd=digits(n)[1]); sumdiv(n, d, digits(d)[1] == fd); \\ A357299
    lista(nn) = my(r=0, x, list=List()); for (n=1, nn, if ((x=f(n)) > r, listput(list, n); r = x);); Vec(list); \\ Michel Marcus, Sep 24 2022
    
  • PARI
    upto(n) = { r = -1; res = List(); forfactored(i = 1, n, if(numdiv(i[2]) >= r, d = divisors(i[2]); t = i[1]\10^logint(i[1], 10); c = sum(j = 1, #d, d[j]\10^logint(d[j], 10) == t); if(c > r, r = c; listput(res, i[1]); ) ) ); res } \\ David A. Corneth, Sep 24 2022
    
  • Python
    from sympy import divisors
    from itertools import count, islice
    def b(n): f = str(n)[0]; return sum(1 for d in divisors(n) if str(d)[0]==f)
    def agen(): # generator of terms
        record = -1
        for m in count(1):
            v = b(m)
            if v > record: yield m; record = v
    print(list(islice(agen(), 17))) # Michael S. Branicky, Sep 24 2022

Extensions

More terms from Michel Marcus, Sep 24 2022
Showing 1-3 of 3 results.