cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357310 a(n) is the number of j in the range 1 <= j <= n with the same maximal exponent in prime factorization as n.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 5, 1, 2, 6, 7, 3, 8, 9, 10, 1, 11, 4, 12, 5, 13, 14, 15, 2, 6, 16, 3, 7, 17, 18, 19, 1, 20, 21, 22, 8, 23, 24, 25, 4, 26, 27, 28, 9, 10, 29, 30, 2, 11, 12, 31, 13, 32, 5, 33, 6, 34, 35, 36, 14, 37, 38, 15, 1, 39, 40, 41, 16, 42, 43, 44, 7, 45, 46, 17, 18, 47, 48, 49, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 23 2022

Keywords

Crossrefs

Cf. A000079 (positions of 1's), A051903, A058933, A289023.

Programs

  • Maple
    f:= proc(n) option remember; `if`(n=1, 0,
          max(map(i-> i[2], ifactors(n)[2])))
        end:
    b:= proc(n) option remember; `if`(n<1, 0, b(n-1)+x^f(n)) end:
    a:= n-> coeff(b(n), x, f(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 23 2022
  • Mathematica
    Table[Length[Select[Range[n], If[# == 1, 0, Max @@ Last /@ FactorInteger[#]] == If[n == 1, 0, Max @@ Last /@ FactorInteger[n]] &]], {n, 1, 80}]
    seq[max_] := Module[{e = Join[{0}, Table[Max @@ FactorInteger[n][[;; , 2]], {n, 2, max}]], c = Table[0, {max}]}, Do[c[[k]] = 1 + Count[e[[1 ;; k - 1]], e[[k]]], {k, 1, max}]; c]; seq[100] (* Amiram Eldar, Jan 05 2024 *)
  • PARI
    lista(nmax) = {my(e = vector(nmax, k, if(k==1, 0, vecmax(factor(k)[,2]))), c); for(k = 1, nmax, c =  1; for(j = 1, k-1, c += (e[j] == e[k])); print1(c, ", "));} \\ Amiram Eldar, Jan 05 2024

Formula

a(n) = |{j <= n : A051903(j) = A051903(n)}|.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1/zeta(2)^2 + Sum_{k>=3} (1/zeta(k+1) - 1/zeta(k))^2 = 0.43029326822775728041... . - Amiram Eldar, Jan 05 2024