cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A359672 a(n) = coefficient of x^n in A(x) where x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^n * (1 + x^n*A(x)^n)^n.

Original entry on oeis.org

1, 1, 2, 5, 21, 72, 257, 998, 3988, 16064, 65734, 273541, 1151184, 4886946, 20916523, 90181047, 391230537, 1706503782, 7480000600, 32930469730, 145546039760, 645574246834, 2872745389578, 12821285282360, 57377599801569, 257416078950987, 1157519956026736, 5216112572700566
Offset: 0

Views

Author

Paul D. Hanna, Jan 10 2023

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 21*x^4 + 72*x^5 + 257*x^6 + 998*x^7 + 3988*x^8 + 16064*x^9 + 65734*x^10 + 273541*x^11 + 1151184*x^12 + ...
where
x = ... + x^6*A(x)^9/(1 + x^3*A(x)^3)^3 - x^2*A(x)^4/(1 + x^2*A(x)^2)^2 + A(x)/(1 + x*A(x)) - 1 + x*(1 + x*A(x)) - x^2*(1 + x^2*A(x)^2)^2 + x^3*(1 + x^3*A(x)^3)^3 + ... + (-1)^(n-1) * x^n * (1 + x^n*A(x)^n)^n + ...
SPECIFIC VALUES.
A(1/d) = 1.71831164... where d = 4.76347639696677679... is given in the formula section.
A(1/5) = 1.47621312973364884841150188176844829427560286588046...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(x - sum(m=-#A,#A, (-1)^(m-1) * x^m * (1 + (x*Ser(A))^m)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^n * (1 + x^n*A(x)^n)^n.
(2) x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^(n*(n-1)) * A(x)^(n^2) / (1 + x^n*A(x)^n)^n.
a(n) ~ c * d^n / n^(3/2), where d = 4.76347639696677679... and c = 0.37393658540119283... - Vaclav Kotesovec, Jan 11 2023

A357791 a(n) = coefficient of x^n in A(x) such that: x = Sum_{n=-oo..+oo} x^n * (1 - x^n * A(-x)^n)^n.

Original entry on oeis.org

1, 1, 2, 5, 21, 88, 377, 1654, 7424, 34000, 158274, 746525, 3559456, 17128250, 83078147, 405754479, 1993777057, 9849668910, 48892589632, 243739139810, 1219789105228, 6125813250402, 30862120708266, 155937956267432, 790019313067409, 4012282344217699, 20423575546661000
Offset: 0

Views

Author

Paul D. Hanna, Dec 24 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 21*x^4 + 88*x^5 + 377*x^6 + 1654*x^7 + 7424*x^8 + 34000*x^9 + 158274*x^10 + 746525*x^11 + 3559456*x^12 + ...
SPECIFIC VALUES.
A(x) = 3/2 at x = 0.1850570503493984408934312903280642188437354418734...
A(1/6) = 1.3085832721715442420948608003299892250459754159045...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(x + sum(n=-#A, #A, (-x)^n * (1 - (-x)^n * Ser(A)^n )^n ), #A-1) ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) x = Sum_{n=-oo..+oo} x^n * (1 - x^n * A(-x)^n)^n.
(2) x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(-x)^(n^2) / (1 - x^n*A(-x)^n)^n.
a(n) ~ c * d^n / n^(3/2), where d = 5.390297559554269719991046... and c = 0.267652299887938085649... - Vaclav Kotesovec, Dec 25 2022

A363139 Expansion of A(x) satisfying -x = Sum_{n=-oo..+oo} (-x)^n * (1 - (-x)^n)^n / A(x)^n.

Original entry on oeis.org

1, 1, 2, 3, 10, 29, 72, 190, 520, 1413, 3888, 10839, 30421, 86218, 246499, 708931, 2050584, 5962100, 17407554, 51019081, 150052163, 442677295, 1309668356, 3884884796, 11551622175, 34425468793, 102807253860, 307617338332, 922112808168, 2768808168311, 8327028966970
Offset: 0

Views

Author

Paul D. Hanna, May 30 2023

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 10*x^4 + 29*x^5 + 72*x^6 + 190*x^7 + 520*x^8 + 1413*x^9 + 3888*x^10 + 10839*x^11 + 30421*x^12 + ...
SPECIFIC VALUES.
G.f. A(x) diverges at x = 1/3.
A(1/sqrt(10)) = 2.740968311596221258712215041101550216...
A(3/10) = 2.04409403049365965943794935957987166879615299154...
A(x) = 2 at x = 0.29764678443183662600376771573865711430158997980267844885...
A(1/4) = 1.54451964019778087973376938515481313055726531377...
		

Crossrefs

Cf. A357399.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(x + sum(n=-#A, #A, (-x)^n * (1 - (-x)^n +x*O(x^#A))^n / Ser(A)^n ), #A-1) ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) -x = Sum_{n=-oo..+oo} (-x)^n * (1 - (-x)^n)^n / A(x)^n.
(2) -x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - (-x)^n)^n.
Showing 1-3 of 3 results.