cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A359672 a(n) = coefficient of x^n in A(x) where x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^n * (1 + x^n*A(x)^n)^n.

Original entry on oeis.org

1, 1, 2, 5, 21, 72, 257, 998, 3988, 16064, 65734, 273541, 1151184, 4886946, 20916523, 90181047, 391230537, 1706503782, 7480000600, 32930469730, 145546039760, 645574246834, 2872745389578, 12821285282360, 57377599801569, 257416078950987, 1157519956026736, 5216112572700566
Offset: 0

Views

Author

Paul D. Hanna, Jan 10 2023

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 21*x^4 + 72*x^5 + 257*x^6 + 998*x^7 + 3988*x^8 + 16064*x^9 + 65734*x^10 + 273541*x^11 + 1151184*x^12 + ...
where
x = ... + x^6*A(x)^9/(1 + x^3*A(x)^3)^3 - x^2*A(x)^4/(1 + x^2*A(x)^2)^2 + A(x)/(1 + x*A(x)) - 1 + x*(1 + x*A(x)) - x^2*(1 + x^2*A(x)^2)^2 + x^3*(1 + x^3*A(x)^3)^3 + ... + (-1)^(n-1) * x^n * (1 + x^n*A(x)^n)^n + ...
SPECIFIC VALUES.
A(1/d) = 1.71831164... where d = 4.76347639696677679... is given in the formula section.
A(1/5) = 1.47621312973364884841150188176844829427560286588046...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(x - sum(m=-#A,#A, (-1)^(m-1) * x^m * (1 + (x*Ser(A))^m)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^n * (1 + x^n*A(x)^n)^n.
(2) x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^(n*(n-1)) * A(x)^(n^2) / (1 + x^n*A(x)^n)^n.
a(n) ~ c * d^n / n^(3/2), where d = 4.76347639696677679... and c = 0.37393658540119283... - Vaclav Kotesovec, Jan 11 2023

A357399 Coefficients of x^n, n >= 0, in A(x) such that: x = Sum_{n=-oo..+oo} (-x)^n * (1 - (-x)^n)^n * A(x)^n.

Original entry on oeis.org

1, 1, 3, 10, 37, 143, 564, 2270, 9305, 38755, 163569, 698186, 3009129, 13077850, 57250728, 252221229, 1117409653, 4975095073, 22249463540, 99901607730, 450187852401, 2035353779794, 9229671434155, 41968536407303, 191318458136066, 874179701912764, 4002949886221529
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 143*x^5 + 564*x^6 + 2270*x^7 + 9305*x^8 + 38755*x^9 + 163569*x^10 + 698186*x^11 + 3009129*x^12 + ...
such that A = A(x) satisfies
x = ... + (x*A)^(-2)/(1 - x^(-2))^2 - (x*A)^(-1)/(1 + x^(-1)) + 1 - (x*A)*(1 + x) + (x*A)^2*(1 - x^2)^2 - (x*A)^3*(1 + x^3)^3 + (x*A)^4*(1 - x^4)^4 + ... + (-x*A)^n*(1 - (-x)^n)^n + ...
SPECIFIC VALUES.
A(x) = 2 at x = 0.205304925829036018515173714762264122490105588782437881...
A(1/5) = 1.772537703863275044370749593488314266794544517965356320...
		

Crossrefs

Cf. A357791.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(x - sum(n=-#A,#A, (-x)^n * (1 - (-x)^n +x*O(x^#A))^n * Ser(A)^n ),#A-1) );A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) x = Sum_{n=-oo..+oo} (-x)^n * (1 - (-x)^n)^n * A(x)^n.
(2) x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ((1 - (-x)^n)^n * A(x)^n).
Showing 1-2 of 2 results.