A358394 Number of types of generalized symmetries in orthogonal diagonal Latin squares of order n.
1, 0, 0, 10, 7, 0, 8
Offset: 1
Examples
For order n=5 there are 7 different multisets L(P) with codes listed below in format "code - multiset": 1 - {1,1,1,1,1}, 2 - {1,1,1,2}, 3 - {1,1,3}, 4 - {1,2,2}, 5 - {1,4}, 6 - {2,3}, 7 - {5}. The diagonal Latin square 0 1 2 3 4 2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2 of order n=5 has all a(5)=7 possible different types of generalized symmetries: 1. Px=[0,1,2,3,4], Py=[0,1,2,3,4], Pv=[0,1,2,3,4] (trivial generalized symmetry), L(Px)={1,1,1,1,1}, L(Py)={1,1,1,1,1}, L(Pv)={1,1,1,1,1}, generalized symmetry type (1,1,1). 2. Px=[0,1,2,3,4], Py=[1,2,3,4,0], Pv=[1,2,3,4,0], L(Px)={1,1,1,1,1}, L(Py)={5}, L(Pv)={5}, generalized symmetry type (1,7,7). 3. Px=[0,4,3,2,1], Py=[0,4,3,2,1], Pv=[0,4,3,2,1], L(Px)={1,2,2}, L(Py)={1,2,2}, L(Pv)={1,2,2}, generalized symmetry type (4,4,4). 4. Px=[0,2,4,1,3], Py=[0,2,4,1,3], Pv=[0,2,4,1,3], L(Px)={1,4}, L(Py)={1,4}, L(Pv)={1,4}, generalized symmetry type (5,5,5). 5. Px=[1,2,3,4,0], Py=[0,1,2,3,4], Pv=[2,3,4,0,1], L(Px)={5}, L(Py)={1,1,1,1,1}, L(Pv)={5}, generalized symmetry type (7,1,7). 6. Px=[1,2,3,4,0], Py=[3,4,0,1,2], Pv=[0,1,2,3,4], L(Px)={5}, L(Py)={5}, L(Pv)={1,1,1,1,1}, generalized symmetry type (7,7,1). 7. Px=[1,2,3,4,0], Py=[1,2,3,4,0], Pv=[3,4,0,1,2], L(Px)={5}, L(Py)={5}, L(Pv)={5}, generalized symmetry type (7,7,7).
Links
- Eduard I. Vatutin, About the number of types of generalized symmetries in orthogonal diagonal Latin squares of orders 1-5.
- Eduard I. Vatutin, About the number of types of generalized symmetries in orthogonal diagonal Latin squares of orders 7-9.
- Eduard I. Vatutin, About the number of types of generalized symmetries in orthogonal diagonal Latin squares of orders 10.
- Eduard I. Vatutin, Proving lists (4, 5, 7, 8, 9, 10), Jul 31 2022
- Index entries for sequences related to Latin squares and rectangles.
Comments