A357488 Number of integer partitions of 2n - 1 with the same length as alternating sum.
1, 0, 1, 2, 4, 5, 9, 13, 23, 34, 54, 78, 120, 170, 252, 358, 517, 725, 1030, 1427, 1992, 2733, 3759, 5106, 6946, 9345, 12577, 16788, 22384, 29641, 39199, 51529, 67626, 88307, 115083, 149332, 193383, 249456, 321134, 411998, 527472, 673233, 857539, 1089223, 1380772
Offset: 1
Keywords
Examples
The a(1) = 1 through a(7) = 9 partitions: (1) . (311) (322) (333) (443) (553) (421) (432) (542) (652) (531) (641) (751) (51111) (52211) (52222) (62111) (53311) (62221) (63211) (73111) (7111111)
Crossrefs
Programs
-
Mathematica
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; Table[Length[Select[IntegerPartitions[n],Length[#]==ats[#]&]],{n,1,30,2}]
Formula
a(n) = A357189(2n - 1).
Extensions
More terms from Alois P. Heinz, Oct 04 2022
Comments