A357529 Triangular numbers k such that 2*k cannot be expressed as a sum of two distinct triangular numbers.
0, 1, 6, 10, 15, 45, 55, 66, 91, 120, 136, 231, 276, 300, 406, 435, 496, 561, 595, 630, 741, 780, 820, 861, 1081, 1225, 1326, 1431, 1830, 2016, 2080, 2145, 2211, 2415, 2485, 2701, 2850, 3240, 3321, 3486, 3655, 3916, 4005, 4465, 4560, 4950, 5050, 5356, 5460, 5565
Offset: 1
Crossrefs
Programs
-
Mathematica
TriangularQ[n_]:=IntegerQ[(Sqrt[1+8n]-1)/2]; A000217[n_]:=n(n+1)/2; a={}; For[k=0, k<=105, k++, ok=1; For[h=0, h<2k, h++, If[TriangularQ[2*A000217[k] - A000217[h]] && k!=h, ok=0]]; If[ok==1, AppendTo[a,k(k+1)/2]]]; a (* Stefano Spezia, Nov 05 2022 *)
Comments