cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357532 a(n) = Sum_{k=0..floor(n/3)} (n-2*k)!/(n-3*k)!.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 12, 19, 34, 63, 112, 211, 414, 799, 1588, 3267, 6706, 13999, 30024, 64723, 141142, 314271, 705724, 1599619, 3685338, 8573167, 20112016, 47804499, 114743614, 277615903, 679057092, 1676636611, 4171532674, 10477002159, 26545428568, 67755344467, 174386589606
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)!/(n-3*k)!);

Formula

a(n) = (2 * a(n-1) + n * a(n-3) + 1)/3 for n > 2.
a(n) ~ c * n^(n/3 + 1/2) / (3^(n/3) * exp(n/3 - n^(2/3)/3^(2/3) - 2*n^(1/3) / 3^(7/3))) * (1 + 1235/(729 * 3^(2/3) * n^(1/3)) + 9452027/(15943230 * 3^(1/3) * n^(2/3)) + 16015315669/(41841412812*n)), where c = 0.50682110703119..., conjecture: c = exp(4/81) * sqrt(2*Pi) / 3^(3/2). - Vaclav Kotesovec, Nov 25 2022