cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A122852 Row sums of number triangle A122851.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 24, 51, 122, 291, 756, 1979, 5526, 15627, 46496, 140451, 442194, 1414931, 4687212, 15785451, 54764846, 193129659, 698978136, 2570480147, 9672977706, 36967490691, 144232455524, 571177352091, 2304843053382, 9434493132011, 39289892366736
Offset: 0

Views

Author

Paul Barry, Sep 14 2006

Keywords

Comments

Essentially the same as A072374. - R. J. Mathar, Jun 18 2008
Diagonal sums of A008279. - Paul Barry, Feb 11 2009

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]*k!,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Feb 08 2014 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k,n-k)*(n-k)!); \\ Michel Marcus, Sep 02 2020

Formula

a(n) = Sum{k=0..n} C(k,n-k)*(n-k)!.
From Paul Barry, Feb 11 2009: (Start)
G.f.: 1/(1-x-x^2/(1-x^2/(1-x-2x^2/(1-2x^2/(1-x-3x^2/(1-3x^2/(1-x-4x^2/(1-4x^2/(1-... (continued fraction).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*k!. (End)
D-finite with recurrence -2*a(n) + 3*a(n-1) + (n-1)*a(n-2) + (-n+1)*a(n-3) = 0. - R. J. Mathar, Nov 15 2012. Proof in [Han 2019]
a(n) ~ sqrt(Pi) * exp(sqrt(n/2) - n/2 + 1/8) * n^((n+1)/2) / 2^(n/2+1) * (1 + 37/(48*sqrt(2*n))). - Vaclav Kotesovec, Feb 08 2014
a(n) = (a(n-1) + n * a(n-2) + 1)/2 for n > 1. - Seiichi Manyama, Nov 19 2022

Extensions

More terms from Vaclav Kotesovec, Jun 04 2019

A357533 a(n) = Sum_{k=0..floor(n/4)} (n-3*k)!/(n-4*k)!.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 8, 13, 20, 29, 46, 77, 128, 205, 338, 581, 1012, 1733, 2990, 5293, 9536, 17117, 30778, 56165, 104108, 193621, 360662, 677693, 1289080, 2467373, 4735826, 9142837, 17814308, 34950245, 68835118, 136197581, 271384112, 544302973, 1096578410, 2218459013, 4513377436
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, (n-3*k)!/(n-4*k)!);

Formula

a(n) = (3 * a(n-1) + n * a(n-4) + 1)/4 for n > 3.

A357570 a(n) = Sum_{k=0..floor(n/5)} (n-4*k)!/(n-5*k)!.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 14, 21, 30, 41, 60, 93, 146, 225, 336, 509, 798, 1281, 2060, 3261, 5154, 8273, 13536, 22365, 36806, 60369, 99588, 166301, 280650, 474801, 802424, 1358973, 2317806, 3987185, 6893196, 11933949, 20690738, 36022161, 63107520, 111146141, 196322454, 347412753
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, (n-4*k)!/(n-5*k)!);

Formula

D-finite with recurrence a(n) = (4 * a(n-1) + n * a(n-5) + 1)/5 for n > 4.

A358604 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-2*k)!/(n-3*k)!.

Original entry on oeis.org

1, 1, 1, 0, -1, -2, -1, 2, 7, 8, -1, -26, -49, -28, 103, 314, 359, -344, -2113, -3682, -161, 14684, 36791, 25762, -100297, -373456, -472241, 587846, 3877487, 7149988, -1111801, -40808566, -103472249, -56751688, 424662623, 1490284654, 1674543359, -4121143444
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*(n-2*k)!/(n-3*k)!);

Formula

a(n) = (2 * a(n-1) - n * a(n-3) + 1)/3 for n > 2.

A358547 a(n) = Sum_{k=0..floor(n/3)} (n-k)!/(n-3*k)!.

Original entry on oeis.org

1, 1, 1, 3, 7, 13, 45, 151, 403, 1617, 6793, 23275, 105951, 522133, 2159077, 10964223, 61134955, 293587801, 1641566913, 10124731987, 55014334903, 335177088285, 2251814156701, 13587321392743, 89436553249347, 647267633012833, 4276528756374265, 30198747030078651
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (n-k)!/(n-3*k)!);

Formula

a(n) = (3 * (2*n-1) * a(n-1) - n * a(n-2) + 2 * (n-1) * n * (2*n-3) * a(n-3) + 2 * (2*n-3))/(9 * (n-1)) for n > 2.
a(n) ~ sqrt(Pi) * 2^(2*n/3 + 1) * n^(2*n/3 + 1/2) / (3^(2*n/3 + 3/2) * exp(2*n/3 - (2/3)^(1/3) * n^(1/3))) * (1 + 1/(2^(4/3) * 3^(5/3) * n^(1/3)) + 145/(2^(11/3) * 3^(10/3) * n^(2/3)) + 3349/(23328*n)). - Vaclav Kotesovec, Nov 25 2022
Showing 1-5 of 5 results.