cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A072374 a(1) = 1; a(n) = 1 + Sum_{i=1..n} Product_{j=i..2*i-1} (n-j).

Original entry on oeis.org

1, 2, 3, 6, 11, 24, 51, 122, 291, 756, 1979, 5526, 15627, 46496, 140451, 442194, 1414931, 4687212, 15785451, 54764846, 193129659, 698978136, 2570480147, 9672977706, 36967490691, 144232455524, 571177352091, 2304843053382, 9434493132011, 39289892366736
Offset: 1

Views

Author

N. J. A. Sloane, Jul 19 2002

Keywords

Comments

A122852 is another version of the same sequence. - R. J. Mathar, Jun 18 2008

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]*k!,{k,0,Floor[n/2]}],{n,1,20}] (* Vaclav Kotesovec, Feb 08 2014 *)

Formula

The sequence 1, 1, 2, 3, .. has a(n)=sum{k=0..floor(n/2), C(n-k, k)k!} (diagonal sums of permutation triangle A008279). - Paul Barry, May 12 2004
Recurrence: 2*a(n) = 3*a(n-1) + (n-1)*a(n-2) - (n-1)*a(n-3). - Vaclav Kotesovec, Feb 08 2014
a(n) ~ sqrt(Pi) * exp(sqrt(n/2) - n/2 + 1/8) * n^((n+1)/2) / 2^(n/2+1) * (1 + 37/(48*sqrt(2*n))). - Vaclav Kotesovec, Feb 08 2014

A357532 a(n) = Sum_{k=0..floor(n/3)} (n-2*k)!/(n-3*k)!.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 12, 19, 34, 63, 112, 211, 414, 799, 1588, 3267, 6706, 13999, 30024, 64723, 141142, 314271, 705724, 1599619, 3685338, 8573167, 20112016, 47804499, 114743614, 277615903, 679057092, 1676636611, 4171532674, 10477002159, 26545428568, 67755344467, 174386589606
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)!/(n-3*k)!);

Formula

a(n) = (2 * a(n-1) + n * a(n-3) + 1)/3 for n > 2.
a(n) ~ c * n^(n/3 + 1/2) / (3^(n/3) * exp(n/3 - n^(2/3)/3^(2/3) - 2*n^(1/3) / 3^(7/3))) * (1 + 1235/(729 * 3^(2/3) * n^(1/3)) + 9452027/(15943230 * 3^(1/3) * n^(2/3)) + 16015315669/(41841412812*n)), where c = 0.50682110703119..., conjecture: c = exp(4/81) * sqrt(2*Pi) / 3^(3/2). - Vaclav Kotesovec, Nov 25 2022

A357533 a(n) = Sum_{k=0..floor(n/4)} (n-3*k)!/(n-4*k)!.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 8, 13, 20, 29, 46, 77, 128, 205, 338, 581, 1012, 1733, 2990, 5293, 9536, 17117, 30778, 56165, 104108, 193621, 360662, 677693, 1289080, 2467373, 4735826, 9142837, 17814308, 34950245, 68835118, 136197581, 271384112, 544302973, 1096578410, 2218459013, 4513377436
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, (n-3*k)!/(n-4*k)!);

Formula

a(n) = (3 * a(n-1) + n * a(n-4) + 1)/4 for n > 3.

A357570 a(n) = Sum_{k=0..floor(n/5)} (n-4*k)!/(n-5*k)!.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 14, 21, 30, 41, 60, 93, 146, 225, 336, 509, 798, 1281, 2060, 3261, 5154, 8273, 13536, 22365, 36806, 60369, 99588, 166301, 280650, 474801, 802424, 1358973, 2317806, 3987185, 6893196, 11933949, 20690738, 36022161, 63107520, 111146141, 196322454, 347412753
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, (n-4*k)!/(n-5*k)!);

Formula

D-finite with recurrence a(n) = (4 * a(n-1) + n * a(n-5) + 1)/5 for n > 4.

A122851 Number triangle T(n,k) = C(k,n-k)*(n-k)!.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 0, 6, 4, 1, 0, 0, 0, 6, 12, 5, 1, 0, 0, 0, 0, 24, 20, 6, 1, 0, 0, 0, 0, 24, 60, 30, 7, 1, 0, 0, 0, 0, 0, 120, 120, 42, 8, 1, 0, 0, 0, 0, 0, 120, 360, 210, 56, 9, 1, 0, 0, 0, 0, 0, 0, 720, 840, 336, 72, 10, 1
Offset: 0

Views

Author

Paul Barry, Sep 14 2006

Keywords

Comments

Row sums are A122852.
Triangle T(n,k), read by rows, given by (0,1,-1,0,0,1,-1,0,0,1,-1,0,0,1,...) DELTA (1,0,0,-1,2,0,0,-2,3,0,0,-3,4,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011

Examples

			Triangle begins
  1;
  0, 1;
  0, 1, 1;
  0, 0, 2, 1;
  0, 0, 2, 3,  1;
  0, 0, 0, 6,  4,  1;
  0, 0, 0, 6, 12,  5, 1;
  0, 0, 0, 0, 24, 20, 6, 1;
  ...
		

Crossrefs

T(2n,n) gives A000142.

Programs

  • Magma
    /* As triangle: */ [[Binomial(k,n-k)*Factorial(n-k): k in [0..n]]: n in [0.. 7]]; // Vincenzo Librandi, Apr 24 2015
  • Mathematica
    Flatten[Table[Binomial[k,n-k](n-k)!,{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 16 2012 *)

Formula

Number triangle T(n,k) = [k<=n]*k!/(2k-n)!.
T(n,k) = A008279(k,n-k). - Danny Rorabaugh, Apr 23 2015

A358603 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * (n-k)!/(n-2*k)!.

Original entry on oeis.org

1, 1, 0, -1, 0, 3, 2, -9, -12, 35, 78, -153, -544, 723, 4170, -3337, -35028, 10851, 320678, 57255, -3178152, -2190253, 33864546, 42120183, -385314460, -719159517, 4649508222, 12033407591, -59076411312, -204022615725, 784134861818, 3554417974647, -10768948801764
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_,b_}]:={n+1,b,(b-a(n+1)+1)/2}; NestList[nxt,{1,1,1},40][[;;,2]] (* Harvey P. Dale, Jul 25 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*(n-k)!/(n-2*k)!);

Formula

a(n) = (a(n-1) - n * a(n-2) + 1)/2 for n > 1.

A358547 a(n) = Sum_{k=0..floor(n/3)} (n-k)!/(n-3*k)!.

Original entry on oeis.org

1, 1, 1, 3, 7, 13, 45, 151, 403, 1617, 6793, 23275, 105951, 522133, 2159077, 10964223, 61134955, 293587801, 1641566913, 10124731987, 55014334903, 335177088285, 2251814156701, 13587321392743, 89436553249347, 647267633012833, 4276528756374265, 30198747030078651
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (n-k)!/(n-3*k)!);

Formula

a(n) = (3 * (2*n-1) * a(n-1) - n * a(n-2) + 2 * (n-1) * n * (2*n-3) * a(n-3) + 2 * (2*n-3))/(9 * (n-1)) for n > 2.
a(n) ~ sqrt(Pi) * 2^(2*n/3 + 1) * n^(2*n/3 + 1/2) / (3^(2*n/3 + 3/2) * exp(2*n/3 - (2/3)^(1/3) * n^(1/3))) * (1 + 1/(2^(4/3) * 3^(5/3) * n^(1/3)) + 145/(2^(11/3) * 3^(10/3) * n^(2/3)) + 3349/(23328*n)). - Vaclav Kotesovec, Nov 25 2022

A344391 T(n, k) = binomial(n - k, k) * factorial(k), for n >= 0 and 0 <= k <= floor(n/2). Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 6, 1, 5, 12, 6, 1, 6, 20, 24, 1, 7, 30, 60, 24, 1, 8, 42, 120, 120, 1, 9, 56, 210, 360, 120, 1, 10, 72, 336, 840, 720, 1, 11, 90, 504, 1680, 2520, 720, 1, 12, 110, 720, 3024, 6720, 5040, 1, 13, 132, 990, 5040, 15120, 20160, 5040
Offset: 0

Views

Author

Peter Luschny, May 17 2021

Keywords

Comments

The antidiagonal representation of the falling factorials (A008279).

Examples

			[ 0] [1]
[ 1] [1]
[ 2] [1,  1]
[ 3] [1,  2]
[ 4] [1,  3,  2]
[ 5] [1,  4,  6]
[ 6] [1,  5, 12,   6]
[ 7] [1,  6, 20,  24]
[ 8] [1,  7, 30,  60,  24]
[ 9] [1,  8, 42, 120, 120]
[10] [1,  9, 56, 210, 360, 120]
[11] [1, 10, 72, 336, 840, 720]
		

Crossrefs

Cf. A122852 (row sums).

Programs

  • Maple
    T := (n, k) -> pochhammer(n + 1 - 2*k, k):
    seq(print(seq(T(n, k), k=0..n/2)), n = 0..11);
  • Sage
    def T(n, k): return rising_factorial(n + 1 - 2*k, k)
    def T(n, k): return (-1)^k*falling_factorial(2*k - n - 1, k)
    def T(n, k): return binomial(n - k, k) * factorial(k)
    print(flatten([[T(n, k) for k in (0..n//2)] for n in (0..11)]))

Formula

T(n, k) = RisingFactorial(n + 1 - 2*k, k).
T(n, k) = (-1)^k*FallingFactorial(2*k - n - 1, k).
Showing 1-8 of 8 results.