cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122852 Row sums of number triangle A122851.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 24, 51, 122, 291, 756, 1979, 5526, 15627, 46496, 140451, 442194, 1414931, 4687212, 15785451, 54764846, 193129659, 698978136, 2570480147, 9672977706, 36967490691, 144232455524, 571177352091, 2304843053382, 9434493132011, 39289892366736
Offset: 0

Views

Author

Paul Barry, Sep 14 2006

Keywords

Comments

Essentially the same as A072374. - R. J. Mathar, Jun 18 2008
Diagonal sums of A008279. - Paul Barry, Feb 11 2009

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]*k!,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Feb 08 2014 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k,n-k)*(n-k)!); \\ Michel Marcus, Sep 02 2020

Formula

a(n) = Sum{k=0..n} C(k,n-k)*(n-k)!.
From Paul Barry, Feb 11 2009: (Start)
G.f.: 1/(1-x-x^2/(1-x^2/(1-x-2x^2/(1-2x^2/(1-x-3x^2/(1-3x^2/(1-x-4x^2/(1-4x^2/(1-... (continued fraction).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*k!. (End)
D-finite with recurrence -2*a(n) + 3*a(n-1) + (n-1)*a(n-2) + (-n+1)*a(n-3) = 0. - R. J. Mathar, Nov 15 2012. Proof in [Han 2019]
a(n) ~ sqrt(Pi) * exp(sqrt(n/2) - n/2 + 1/8) * n^((n+1)/2) / 2^(n/2+1) * (1 + 37/(48*sqrt(2*n))). - Vaclav Kotesovec, Feb 08 2014
a(n) = (a(n-1) + n * a(n-2) + 1)/2 for n > 1. - Seiichi Manyama, Nov 19 2022

Extensions

More terms from Vaclav Kotesovec, Jun 04 2019

A242653 Triangle read by rows: T(n,k) = ((n+k)/2)!/k! if n,k have same parity, otherwise 0.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 6, 0, 4, 0, 1, 6, 0, 12, 0, 5, 0, 1, 0, 24, 0, 20, 0, 6, 0, 1, 24, 0, 60, 0, 30, 0, 7, 0, 1, 0, 120, 0, 120, 0, 42, 0, 8, 0, 1, 120, 0, 360, 0, 210, 0, 56, 0, 9, 0, 1, 0, 720, 0, 840, 0, 336, 0, 72, 0, 10, 0, 1, 720, 0, 2520, 0, 1680, 0, 504, 0, 90, 0, 11, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2014

Keywords

Examples

			Triangle begins:
  1
  0  1
  1  0  1
  0  2  0  1
  2  0  3  0 1
  0  6  0  4 0 1
  6  0 12  0 5 0 1
  0 24  0 20 0 6 0 1
  ...
		

Crossrefs

Cf. A122851.

Programs

  • Maple
    N:= 1000; # to get a(0) to a(N)
    count:= -1;
    for n from 0 while count < N do
      for k from 0 to n while count  < N do
        count:= count+1;
        if type(n-k,even) then
           A[count]:= ((n+k)/2)!/k!
        else
           A[count]:= 0
        fi;
      od
    od:
    seq(A[i],i=0..N); # Robert Israel, Jun 10 2014
  • Mathematica
    Table[If[EvenQ[n-k], ((n+k)/2)!/k!, 0], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018 *)

A344391 T(n, k) = binomial(n - k, k) * factorial(k), for n >= 0 and 0 <= k <= floor(n/2). Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 6, 1, 5, 12, 6, 1, 6, 20, 24, 1, 7, 30, 60, 24, 1, 8, 42, 120, 120, 1, 9, 56, 210, 360, 120, 1, 10, 72, 336, 840, 720, 1, 11, 90, 504, 1680, 2520, 720, 1, 12, 110, 720, 3024, 6720, 5040, 1, 13, 132, 990, 5040, 15120, 20160, 5040
Offset: 0

Views

Author

Peter Luschny, May 17 2021

Keywords

Comments

The antidiagonal representation of the falling factorials (A008279).

Examples

			[ 0] [1]
[ 1] [1]
[ 2] [1,  1]
[ 3] [1,  2]
[ 4] [1,  3,  2]
[ 5] [1,  4,  6]
[ 6] [1,  5, 12,   6]
[ 7] [1,  6, 20,  24]
[ 8] [1,  7, 30,  60,  24]
[ 9] [1,  8, 42, 120, 120]
[10] [1,  9, 56, 210, 360, 120]
[11] [1, 10, 72, 336, 840, 720]
		

Crossrefs

Cf. A122852 (row sums).

Programs

  • Maple
    T := (n, k) -> pochhammer(n + 1 - 2*k, k):
    seq(print(seq(T(n, k), k=0..n/2)), n = 0..11);
  • Sage
    def T(n, k): return rising_factorial(n + 1 - 2*k, k)
    def T(n, k): return (-1)^k*falling_factorial(2*k - n - 1, k)
    def T(n, k): return binomial(n - k, k) * factorial(k)
    print(flatten([[T(n, k) for k in (0..n//2)] for n in (0..11)]))

Formula

T(n, k) = RisingFactorial(n + 1 - 2*k, k).
T(n, k) = (-1)^k*FallingFactorial(2*k - n - 1, k).
Showing 1-3 of 3 results.