A003470
a(n) = n*a(n-1) - a(n-2) + 1 + (-1)^n.
Original entry on oeis.org
1, 1, 3, 8, 31, 147, 853, 5824, 45741, 405845, 4012711, 43733976, 520795003, 6726601063, 93651619881, 1398047697152, 22275111534553, 377278848390249, 6768744159489931, 128228860181918440, 2557808459478878871, 53585748788874537851, 1176328664895760953853
Offset: 0
G.f. = 1 + x + 3*x^2 + 8*x^3 + 31*x^4 + 147*x^5 + 853*x^6 + 5824*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
f:= gfun:-rectoproc({a(n) -(n-1)*a(n-1)-(n-2)*a(n-2)+a(n-3)-2=0,a(0)=1,a(1)=1,a(2)=3},a(n),remember):
map(f, [$0..30]); # Robert Israel, Dec 06 2016
-
t = {1, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]] + 1 + (-1)^n], {n, 2, 20}] (* T. D. Noe, Oct 07 2013 *)
T[n_, k_] := HypergeometricPFQ[{k+1, k-n},{},-1];
Table[Sum[(-1)^k T[n,k], {k,0,n}], {n,0,22}] (* Peter Luschny, Oct 05 2017 *)
More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Oct 25 2004
A122852
Row sums of number triangle A122851.
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 24, 51, 122, 291, 756, 1979, 5526, 15627, 46496, 140451, 442194, 1414931, 4687212, 15785451, 54764846, 193129659, 698978136, 2570480147, 9672977706, 36967490691, 144232455524, 571177352091, 2304843053382, 9434493132011, 39289892366736
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Jonathan Fang, Zachary Hamaker, and Justin Troyka, On pattern avoidance in matchings and involutions, arXiv:2009.00079 [math.CO], 2020. See Theorem 1.6 (b).
- Guo-Niu Han, Hankel Continued fractions and Hankel determinants of the Euler numbers, arXiv:1906.00103 [math.CO], 2019. See p. 27.
- Qiong Qiong Pan and Jiang Zeng, The gamma-coefficients of Branden's (p,q)-Eulerian polynomials and André permutations, arXiv:1910.01747 [math.CO], 2019.
-
Table[Sum[Binomial[n-k,k]*k!,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Feb 08 2014 *)
-
a(n) = sum(k=0, n, binomial(k,n-k)*(n-k)!); \\ Michel Marcus, Sep 02 2020
A357532
a(n) = Sum_{k=0..floor(n/3)} (n-2*k)!/(n-3*k)!.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 7, 12, 19, 34, 63, 112, 211, 414, 799, 1588, 3267, 6706, 13999, 30024, 64723, 141142, 314271, 705724, 1599619, 3685338, 8573167, 20112016, 47804499, 114743614, 277615903, 679057092, 1676636611, 4171532674, 10477002159, 26545428568, 67755344467, 174386589606
Offset: 0
A113287
Triangle T, read by rows, where row n of T equals row n of matrix (n+1)-th power of triangle A112555.
Original entry on oeis.org
1, 2, 1, -3, 0, 1, 4, 4, 4, 1, -5, -10, -10, 0, 1, 6, 18, 24, 12, 6, 1, -7, -28, -49, -42, -21, 0, 1, 8, 40, 88, 104, 72, 24, 8, 1, -9, -54, -144, -216, -198, -108, -36, 0, 1, 10, 70, 220, 400, 460, 340, 160, 40, 10, 1, -11, -88, -319, -682, -946, -880, -550, -220, -55, 0, 1
Offset: 0
Triangle begins:
1;
2,1;
-3,0,1;
4,4,4,1;
-5,-10,-10,0,1;
6,18,24,12,6,1;
-7,-28,-49,-42,-21,0,1;
8,40,88,104,72,24,8,1;
-9,-54,-144,-216,-198,-108,-36,0,1;
10,70,220,400,460,340,160,40,10,1; ...
-
{T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff(polcoeff(1/(1-x*y)+x*(x+2)/((1-x*y)^2*(1+x+x*y)^2),n,X),k,Y)}
A113290
Matrix logarithm of triangle A113287.
Original entry on oeis.org
0, 2, 0, -3, 0, 0, 6, 4, 4, 0, -10, -10, -10, 0, 0, 19, 24, 30, 12, 6, 0, -35, -49, -70, -42, -21, 0, 0, 72, 104, 164, 128, 84, 24, 8, 0, -150, -216, -360, -324, -252, -108, -36, 0, 0, 343, 480, 820, 800, 710, 400, 180, 40, 10, 0, -803, -1089, -1870, -1892, -1826, -1210, -660, -220, -55, 0, 0
Offset: 0
Triangle begins:
0;
2,0;
-3,0,0;
6,4,4,0;
-10,-10,-10,0,0;
19,24,30,12,6,0;
-35,-49,-70,-42,-21,0,0;
72,104,164,128,84,24,8,0;
-150,-216,-360,-324,-252,-108,-36,0,0;
343,480,820,800,710,400,180,40,10,0; ...
-
{T(n,k)=local(x=X+O(X^(n+2)),y=Y+O(Y^(n+2)),M=matrix(n+1,n+1,r,c,if(r==c,1, if(r>c,r*polcoeff(polcoeff(1/(1-x*y)+x/((1-x*y)*(1+x+x*y)),r-1,X),c-1,Y))))); if(n
A357533
a(n) = Sum_{k=0..floor(n/4)} (n-3*k)!/(n-4*k)!.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 5, 8, 13, 20, 29, 46, 77, 128, 205, 338, 581, 1012, 1733, 2990, 5293, 9536, 17117, 30778, 56165, 104108, 193621, 360662, 677693, 1289080, 2467373, 4735826, 9142837, 17814308, 34950245, 68835118, 136197581, 271384112, 544302973, 1096578410, 2218459013, 4513377436
Offset: 0
A357570
a(n) = Sum_{k=0..floor(n/5)} (n-4*k)!/(n-5*k)!.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 14, 21, 30, 41, 60, 93, 146, 225, 336, 509, 798, 1281, 2060, 3261, 5154, 8273, 13536, 22365, 36806, 60369, 99588, 166301, 280650, 474801, 802424, 1358973, 2317806, 3987185, 6893196, 11933949, 20690738, 36022161, 63107520, 111146141, 196322454, 347412753
Offset: 0
A113288
Matrix inverse of triangle A113287.
Original entry on oeis.org
1, -2, 1, 3, 0, 1, -8, -4, -4, 1, 15, 10, 10, 0, 1, -36, -30, -36, -12, -6, 1, 77, 70, 91, 42, 21, 0, 1, -192, -184, -256, -152, -96, -24, -8, 1, 459, 450, 648, 432, 306, 108, 36, 0, 1, -1220, -1210, -1780, -1280, -1000, -460, -200, -40, -10, 1, 3201, 3190, 4741, 3542, 2926, 1540, 770, 220, 55, 0, 1
Offset: 0
Triangle begins:
.1;
.-2,1;
.3,0,1;
.-8,-4,-4,1;
.15,10,10,0,1;
.-36,-30,-36,-12,-6,1;
.77,70,91,42,21,0,1;
.-192,-184,-256,-152,-96,-24,-8,1;
.459,450,648,432,306,108,36,0,1;
.-1220,-1210,-1780,-1280,-1000,-460,-200,-40,-10,1;
.3201,3190,4741,3542,2926,1540,770,220,55,0,1; ...
-
{T(n,k)=local(x=X+O(X^(n+2)),y=Y+O(Y^(n+2)),M=matrix(n+1,n+1,r,c, polcoeff(polcoeff(1/(1-x*y)+r*x/((1-x*y)*(1+x+x*y)),r-1,X),c-1,Y))); if(n
A113291
a(n) = A113290(n,1)/(n+1) for n>=0, where A113290 is the matrix log of triangle A113287.
Original entry on oeis.org
0, 0, 0, 1, -2, 4, -7, 13, -24, 48, -99, 221, -512, 1268, -3247, 8773, -24400, 70896, -211347, 653541, -2068472, 6755684, -22541135, 77305981, -270435640, 969413776, -3539893923, 13212871629, -50180362320, 194412817844, -765590169935, 3070433223317
Offset: 0
-
a(n)=if(n<3,0,(-1)^(n-3)*sum(k=0,n-3,sum(j=0,k\2,(k-j)!/(k-2*j)!)))
Showing 1-9 of 9 results.
Comments