cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003470 a(n) = n*a(n-1) - a(n-2) + 1 + (-1)^n.

Original entry on oeis.org

1, 1, 3, 8, 31, 147, 853, 5824, 45741, 405845, 4012711, 43733976, 520795003, 6726601063, 93651619881, 1398047697152, 22275111534553, 377278848390249, 6768744159489931, 128228860181918440, 2557808459478878871, 53585748788874537851, 1176328664895760953853
Offset: 0

Views

Author

Keywords

Comments

Row sums of A086764. - Philippe Deléham, Apr 27 2004
a(n+2m) == a(n) (mod m) for all n and m. - Robert Israel, Dec 06 2016

Examples

			G.f. = 1 + x + 3*x^2 + 8*x^3 + 31*x^4 + 147*x^5 + 853*x^6 + 5824*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) -(n-1)*a(n-1)-(n-2)*a(n-2)+a(n-3)-2=0,a(0)=1,a(1)=1,a(2)=3},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Dec 06 2016
  • Mathematica
    t = {1, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]] + 1 + (-1)^n], {n, 2, 20}] (* T. D. Noe, Oct 07 2013 *)
    T[n_, k_] := HypergeometricPFQ[{k+1, k-n},{},-1];
    Table[Sum[(-1)^k T[n,k], {k,0,n}], {n,0,22}] (* Peter Luschny, Oct 05 2017 *)

Formula

Diagonal sums of reverse of permutation triangle A008279. a(n) = Sum_{k=0..floor(n/2)} (n-k)!/k!. - Paul Barry, May 12 2004
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*(n-2k)!. - Paul Barry Dec 15 2010
G.f.: 1/(1-x^2-x/(1-x/(1-x^2-2x/(1-2x/(1-x^2-3x/(1-3x/(1-x^2-4x/(1-4x/(1-.... (continued fraction);
G.f.: 1/(1-x-x^2-x^2/(1-3x-x^2-4x^2/(1-5x-x^2-9x^2/(1-7x-x^2-16x^2/(1-... (continued fraction). - Paul Barry, Dec 15 2010
G.f.: hypergeom([1,1],[],x/(1-x^2))/(1-x^2). - Mark van Hoeij, Nov 08 2011
G.f.: 1/Q(0), where Q(k)= 1 - x^2 - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 20 2013
From Robert Israel, Dec 06 2016: (Start)
a(2m) = hypergeom([1,-m,m+1],[],-1).
a(2m+1) = hypergeom([1,-m,m+2],[],-1)*(m+1).
a(2m-1) + a(2m+1) = (2m+1) a(2m). (End)
0 = a(n)*(-a(n+2) - a(n+3)) + a(n+1)*(-2 + a(n+1) - 2*a(n+3) + a(n+4)) + a(n+2)*(-2*a(n+3) + a(n+4)) + a(n+3)*(+2 - a(n+3)) if n >= 0. - Michael Somos, Dec 06 2016
0 = a(n)*(-a(n+2) + a(n+4)) + a(n+1)*(+a(n+1) - a(n+2) - a(n+3) + 3*a(n+4) - a(n+5)) + a(n+2)*(-a(n+3) + a(n+4)) + a(n+3)*(-a(n+4) + a(n+5)) + a(n+4)*(-a(n+4)) if n >= 0. - Michael Somos, Dec 06 2016
a(n) = Sum_{k=0..n} (-1)^k*hypergeom([k+1, k-n], [], -1). - Peter Luschny, Oct 05 2017
D-finite with recurrence: a(n) -n*a(n-1) +(n-2)*a(n-3) -a(n-4)=0. - R. J. Mathar, Apr 29 2020
a(n) ~ n! * (1 + 1/n + 1/(2*n^2) + 2/(3*n^3) + 25/(24*n^4) + 77/(40*n^5) + 2971/(720*n^6) + 6287/(630*n^7) + 1074809/(40320*n^8) + 28160749/(362880*n^9) + ...). - Vaclav Kotesovec, Nov 25 2022

Extensions

More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Oct 25 2004

A122852 Row sums of number triangle A122851.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 24, 51, 122, 291, 756, 1979, 5526, 15627, 46496, 140451, 442194, 1414931, 4687212, 15785451, 54764846, 193129659, 698978136, 2570480147, 9672977706, 36967490691, 144232455524, 571177352091, 2304843053382, 9434493132011, 39289892366736
Offset: 0

Views

Author

Paul Barry, Sep 14 2006

Keywords

Comments

Essentially the same as A072374. - R. J. Mathar, Jun 18 2008
Diagonal sums of A008279. - Paul Barry, Feb 11 2009

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]*k!,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Feb 08 2014 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k,n-k)*(n-k)!); \\ Michel Marcus, Sep 02 2020

Formula

a(n) = Sum{k=0..n} C(k,n-k)*(n-k)!.
From Paul Barry, Feb 11 2009: (Start)
G.f.: 1/(1-x-x^2/(1-x^2/(1-x-2x^2/(1-2x^2/(1-x-3x^2/(1-3x^2/(1-x-4x^2/(1-4x^2/(1-... (continued fraction).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*k!. (End)
D-finite with recurrence -2*a(n) + 3*a(n-1) + (n-1)*a(n-2) + (-n+1)*a(n-3) = 0. - R. J. Mathar, Nov 15 2012. Proof in [Han 2019]
a(n) ~ sqrt(Pi) * exp(sqrt(n/2) - n/2 + 1/8) * n^((n+1)/2) / 2^(n/2+1) * (1 + 37/(48*sqrt(2*n))). - Vaclav Kotesovec, Feb 08 2014
a(n) = (a(n-1) + n * a(n-2) + 1)/2 for n > 1. - Seiichi Manyama, Nov 19 2022

Extensions

More terms from Vaclav Kotesovec, Jun 04 2019

A357532 a(n) = Sum_{k=0..floor(n/3)} (n-2*k)!/(n-3*k)!.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 12, 19, 34, 63, 112, 211, 414, 799, 1588, 3267, 6706, 13999, 30024, 64723, 141142, 314271, 705724, 1599619, 3685338, 8573167, 20112016, 47804499, 114743614, 277615903, 679057092, 1676636611, 4171532674, 10477002159, 26545428568, 67755344467, 174386589606
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)!/(n-3*k)!);

Formula

a(n) = (2 * a(n-1) + n * a(n-3) + 1)/3 for n > 2.
a(n) ~ c * n^(n/3 + 1/2) / (3^(n/3) * exp(n/3 - n^(2/3)/3^(2/3) - 2*n^(1/3) / 3^(7/3))) * (1 + 1235/(729 * 3^(2/3) * n^(1/3)) + 9452027/(15943230 * 3^(1/3) * n^(2/3)) + 16015315669/(41841412812*n)), where c = 0.50682110703119..., conjecture: c = exp(4/81) * sqrt(2*Pi) / 3^(3/2). - Vaclav Kotesovec, Nov 25 2022

A113287 Triangle T, read by rows, where row n of T equals row n of matrix (n+1)-th power of triangle A112555.

Original entry on oeis.org

1, 2, 1, -3, 0, 1, 4, 4, 4, 1, -5, -10, -10, 0, 1, 6, 18, 24, 12, 6, 1, -7, -28, -49, -42, -21, 0, 1, 8, 40, 88, 104, 72, 24, 8, 1, -9, -54, -144, -216, -198, -108, -36, 0, 1, 10, 70, 220, 400, 460, 340, 160, 40, 10, 1, -11, -88, -319, -682, -946, -880, -550, -220, -55, 0, 1
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2005

Keywords

Comments

Remarkably, the matrix logarithm (A113290) is an integer triangle. Matrix m-th power of A112555 = I + m*(A112555 - I) where I = identity matrix.

Examples

			Triangle begins:
1;
2,1;
-3,0,1;
4,4,4,1;
-5,-10,-10,0,1;
6,18,24,12,6,1;
-7,-28,-49,-42,-21,0,1;
8,40,88,104,72,24,8,1;
-9,-54,-144,-216,-198,-108,-36,0,1;
10,70,220,400,460,340,160,40,10,1; ...
		

Crossrefs

Cf. A112555, A113288 (inverse), A113290 (log), A113291, A072374.

Programs

  • PARI
    {T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff(polcoeff(1/(1-x*y)+x*(x+2)/((1-x*y)^2*(1+x+x*y)^2),n,X),k,Y)}

Formula

G.f.: A(x, y) = 1/(1-x*y) + x*(x+2)/((1-x*y)^2*(1+x+x*y)^2).

A113290 Matrix logarithm of triangle A113287.

Original entry on oeis.org

0, 2, 0, -3, 0, 0, 6, 4, 4, 0, -10, -10, -10, 0, 0, 19, 24, 30, 12, 6, 0, -35, -49, -70, -42, -21, 0, 0, 72, 104, 164, 128, 84, 24, 8, 0, -150, -216, -360, -324, -252, -108, -36, 0, 0, 343, 480, 820, 800, 710, 400, 180, 40, 10, 0, -803, -1089, -1870, -1892, -1826, -1210, -660, -220, -55, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2005

Keywords

Examples

			Triangle begins:
0;
2,0;
-3,0,0;
6,4,4,0;
-10,-10,-10,0,0;
19,24,30,12,6,0;
-35,-49,-70,-42,-21,0,0;
72,104,164,128,84,24,8,0;
-150,-216,-360,-324,-252,-108,-36,0,0;
343,480,820,800,710,400,180,40,10,0; ...
		

Crossrefs

Cf. A113287, A113288, A113291 (column 1), A113292 (column 0), A072374.

Programs

  • PARI
    {T(n,k)=local(x=X+O(X^(n+2)),y=Y+O(Y^(n+2)),M=matrix(n+1,n+1,r,c,if(r==c,1, if(r>c,r*polcoeff(polcoeff(1/(1-x*y)+x/((1-x*y)*(1+x+x*y)),r-1,X),c-1,Y))))); if(n
    				

Formula

T(n, 1) = (n+1)*A113291(n).

A357533 a(n) = Sum_{k=0..floor(n/4)} (n-3*k)!/(n-4*k)!.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 8, 13, 20, 29, 46, 77, 128, 205, 338, 581, 1012, 1733, 2990, 5293, 9536, 17117, 30778, 56165, 104108, 193621, 360662, 677693, 1289080, 2467373, 4735826, 9142837, 17814308, 34950245, 68835118, 136197581, 271384112, 544302973, 1096578410, 2218459013, 4513377436
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, (n-3*k)!/(n-4*k)!);

Formula

a(n) = (3 * a(n-1) + n * a(n-4) + 1)/4 for n > 3.

A357570 a(n) = Sum_{k=0..floor(n/5)} (n-4*k)!/(n-5*k)!.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 14, 21, 30, 41, 60, 93, 146, 225, 336, 509, 798, 1281, 2060, 3261, 5154, 8273, 13536, 22365, 36806, 60369, 99588, 166301, 280650, 474801, 802424, 1358973, 2317806, 3987185, 6893196, 11933949, 20690738, 36022161, 63107520, 111146141, 196322454, 347412753
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, (n-4*k)!/(n-5*k)!);

Formula

D-finite with recurrence a(n) = (4 * a(n-1) + n * a(n-5) + 1)/5 for n > 4.

A113288 Matrix inverse of triangle A113287.

Original entry on oeis.org

1, -2, 1, 3, 0, 1, -8, -4, -4, 1, 15, 10, 10, 0, 1, -36, -30, -36, -12, -6, 1, 77, 70, 91, 42, 21, 0, 1, -192, -184, -256, -152, -96, -24, -8, 1, 459, 450, 648, 432, 306, 108, 36, 0, 1, -1220, -1210, -1780, -1280, -1000, -460, -200, -40, -10, 1, 3201, 3190, 4741, 3542, 2926, 1540, 770, 220, 55, 0, 1
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2005

Keywords

Examples

			Triangle begins:
.1;
.-2,1;
.3,0,1;
.-8,-4,-4,1;
.15,10,10,0,1;
.-36,-30,-36,-12,-6,1;
.77,70,91,42,21,0,1;
.-192,-184,-256,-152,-96,-24,-8,1;
.459,450,648,432,306,108,36,0,1;
.-1220,-1210,-1780,-1280,-1000,-460,-200,-40,-10,1;
.3201,3190,4741,3542,2926,1540,770,220,55,0,1; ...
		

Crossrefs

Cf. A113287, A113289 (row sums), A113290 (-log), A072374.

Programs

  • PARI
    {T(n,k)=local(x=X+O(X^(n+2)),y=Y+O(Y^(n+2)),M=matrix(n+1,n+1,r,c, polcoeff(polcoeff(1/(1-x*y)+r*x/((1-x*y)*(1+x+x*y)),r-1,X),c-1,Y))); if(n
    				

Formula

T(n, 0) = (-1)^n*(n+1)*A072374(n-1) for n>=2, with T(1, 0)=-2, T(n, n)=1. T(n, 1) = (-1)^n*(n+1)*(A072374(n-1) - 1) for n>=2.

A113291 a(n) = A113290(n,1)/(n+1) for n>=0, where A113290 is the matrix log of triangle A113287.

Original entry on oeis.org

0, 0, 0, 1, -2, 4, -7, 13, -24, 48, -99, 221, -512, 1268, -3247, 8773, -24400, 70896, -211347, 653541, -2068472, 6755684, -22541135, 77305981, -270435640, 969413776, -3539893923, 13212871629, -50180362320, 194412817844, -765590169935, 3070433223317
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2005

Keywords

Crossrefs

Programs

  • PARI
    a(n)=if(n<3,0,(-1)^(n-3)*sum(k=0,n-3,sum(j=0,k\2,(k-j)!/(k-2*j)!)))

Formula

G.f. satisfies: A(x) = x^3*((2+x)/(1+x) + (1+x)*A'(x))/(2+3*x+2*x^2). a(n+3) = (-1)^n*Sum_{k=0..n} Sum{j=0..[k/2]} (k-j)!/(k-2*j)! for n>=0. a(n+3) = -a(n+2) + (-1)^n*A072374(n) for n>=1.
Showing 1-9 of 9 results.