A357552 a(n) = sigma(n) * binomial(2*n-1,n), for n >= 1.
1, 9, 40, 245, 756, 5544, 13728, 96525, 316030, 1662804, 4232592, 37858184, 72804200, 481399200, 1861410240, 9316746045, 21002455980, 176965138350, 353452638000, 2894777105220, 8612125991040, 37873781346960, 98801168731200, 967428110493000, 1959364399785156
Offset: 1
Keywords
Programs
-
Mathematica
Table[DivisorSigma[1,n]Binomial[2n-1,n],{n,30}] (* Harvey P. Dale, Aug 19 2025 *)
-
PARI
{a(n) = sigma(n) * binomial(2*n-1,n)} for(n=1,30,print1(a(n),", "))
Formula
L.g.f.: L(x) = x + 9*x^2/2 + 40*x^3/3 + 245*x^4/4 + 756*x^5/5 + 5544*x^6/6 + 13728*x^7/7 + 96525*x^8/8 + 316030*x^9/9 + 1662804*x^10/10 + 4232592*x^11/11 + 37858184*x^12/12 + ... + a(n)*x^n/n + ...
equivalently,
L(x) = 1*1*x + 3*3*x^2/2 + 4*10*x^3/3 + 7*35*x^4/4 + 6*126*x^5/5 + 12*462*x^6/6 + 8*1716*x^7/7 + 15*6435*x^8/8 + ... + sigma(n)*binomial(2*n-1,n)*x^n/n + ...
where exponentiation yields the integer series given by A156305:
exp(L(x)) = 1 + x + 5*x^2 + 18*x^3 + 87*x^4 + 290*x^5 + 1553*x^6 + 5015*x^7 + 25436*x^8 + 94500*x^9 + 431464*x^10 + ... + A156305(n)*x^n + ...
Comments