cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A357556 a(n) is the denominator of Sum_{d|n} (-1)^(d+1) / d^2.

Original entry on oeis.org

1, 4, 9, 16, 25, 6, 49, 64, 81, 50, 121, 72, 169, 98, 45, 256, 289, 108, 361, 200, 441, 242, 529, 288, 625, 338, 729, 392, 841, 15, 961, 1024, 1089, 578, 49, 1296, 1369, 722, 1521, 800, 1681, 147, 1849, 88, 2025, 1058, 2209, 128, 2401, 2500, 2601, 1352, 2809, 243, 3025
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 03 2022

Keywords

Examples

			1, 3/4, 10/9, 11/16, 26/25, 5/6, 50/49, 43/64, 91/81, 39/50, 122/121, ...
		

Crossrefs

Cf. A017668, A064027, A098988, A321543, A334580, A357555 (numerators).

Programs

  • Mathematica
    Table[Sum[(-1)^(d + 1)/d^2, {d, Divisors[n]}], {n, 1, 55}] // Denominator
    nmax = 55; CoefficientList[Series[Sum[(-1)^(k + 1) x^k/(k^2 (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
  • PARI
    a(n) = denominator(sumdiv(n, d, (-1)^(d+1)/d^2)); \\ Michel Marcus, Oct 03 2022
  • Python
    from sympy import divisors
    from fractions import Fraction
    def a(n): return sum(Fraction((-1)**(d+1), d*d) for d in divisors(n, generator=True)).denominator
    print([a(n) for n in range(1, 56)]) # Michael S. Branicky, Oct 03 2022
    

Formula

Denominators of coefficients in expansion of Sum_{k>=1} (-1)^(k+1) * x^k / (k^2 * (1 - x^k)).
Showing 1-1 of 1 results.