A357569 a(n) = binomial(3*n,n)^2 - 27*binomial(2*n,n).
-26, -45, 63, 6516, 243135, 9011205, 344597148, 13520945736, 540917244351, 21966327267885, 902702921361813, 37456461969311736, 1566697064604277788, 65973795093057780936, 2794203818388994498200, 118933541228931589568016, 5084343623375039833670079, 218184481964802862563857685
Offset: 0
Examples
Examples of supercongruences: a(13) - a(1) = 65973795093057780936 + 45 = (3^2)*(13^5)*163*121122434651 == 0 (mod 13^5). a(5^2) - a(5) = 2765555290416839473031163791322085183080 - 9011205 = (3^2)*(5^9)* 229*2333*6840413*74974087*574203805501 == 0 (mod 5^9).
Links
- C. Helou and G. Terjanian, On Wolstenholme’s theorem and its converse, J. Number Theory 128 (2008), 475-499.
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv preprint arXiv:1111.3057 [math.NT], 2011.
Programs
-
Maple
seq(binomial(3*n,n)^2 - 27*binomial(2*n,n), n = 0..20);
-
Mathematica
Table[Binomial[3n,n]^2-27*Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, Jun 12 2023 *)
Formula
a(k*p^r) == a(k*p^(r-1)) ( mod p^(3*r) ) for positive integers k and r and for all primes p >= 5 (see Meštrović, Section 6, equation 39).
a(p) == a(1) (mod p^5) for all primes p >= 7 (apply Helou and Terjanian, Section 3, Proposition 2).
Comments