A357571 The sixth moment of an n X n random +-1 matrix.
1, 1, 32, 1536, 282624, 66846720, 27053752320, 16104538275840, 13681567224299520, 15874223643851489280, 24412997036693834956800, 48514602066025722465484800, 121994703799547846503012761600, 381343447691461317926230740172800, 1459468400650603118890910517244723200
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..180
- Dominik Beck, Zelin Lv and Aaron Potechin, The Sixth Moment of Random Determinants, arXiv:2206.11356 [math.CO], 2022-2023. See Table 1 p. 4.
Crossrefs
Cf. A052127.
Programs
-
PARI
f6(n,m4,m6)=sum(j=0,n, binomial(n,j)*sum(a=0,j, binomial(j,a)*(m6-15)^a*(m4-3)^(j-a)*D(n,a,j-a))) D(n,a,b)=prod(j=0,a+b-1,n-j)*sum(i=0,b, binomial(b,i)*C(i)*H(n,b-i,a,b))*P(n-a-b) P(n)=n!*(n+2)!*(n+4)!/48 C(n)=if(n<2, n==0, (n-1)*(C(n-1)+15*C(n-2))) H(n,j,a,b)=sum(x=1,j,binomial(j-1,x-1)*j!/x!*prod(y=0,x-1, 3*(n-a-b)-y)) \\ Charles R Greathouse IV, Oct 03 2022
-
PARI
a(n)={(n!)^2 * sum(j=0, n, sum(i=0, j, ((1+i)*(2+i)*(4+i)! / (48*(n-j)!)) * binomial(14+j+2*i,j-i) * (16)^(n-j) * (-2)^(j-i) ))} \\ Andrew Howroyd, Mar 16 2023
-
Python
from fractions import Fraction from math import factorial, comb def A357571(n): return int(factorial(n)**2*sum(Fraction(1<<(n-j<<2),3*factorial(n-j))*sum((1+i)*(2+i)*factorial(4+i)*comb(14+j+(i<<1),j-i)*(-1 if (j-i)&1 else 1)<<(j-i) for i in range(j+1)) for j in range(n+1)))>>4 # Chai Wah Wu, Apr 20 2023
Formula
a(n) = (n!)^2 * Sum_{j=0..n} Sum_{i=0..j} ((1+i)*(2+i)*(4+i)! / (48*(n-j)!)) * binomial(14+j+2*i,j-i) * (m_6-15*m_4+30)^(n-j) * (m_4-3)^(j-i) where m_6 = m_4 = 1.
G.f.: A(t) = (e^(t*(m_6 - 15*m_4 + 30)) / (48*(1 + 3*t - m_4*t)^15)) * Sum_{i>=0} ((1+i)*(2+i)*(4+i)! * t^i / (1 + 3*t - m_4*t)^(3*i)) where m_6 = m_4 = 1.
Extensions
a(0)=1 prepended and some terms corrected by Alois P. Heinz, Apr 19 2023
Comments