cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357580 a(n) = ((1 + sqrt(n))^n - (1 - sqrt(n))^n)/(2*n*sqrt(n)).

Original entry on oeis.org

1, 1, 2, 5, 16, 57, 232, 1017, 4864, 24641, 133024, 752765, 4476928, 27707513, 178613376, 1191756593, 8231124992, 58598528065, 429868937728, 3239768599221, 25073052286976, 198825601967609, 1614604933769216, 13405327061690025, 113725655719346176
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember;
         `if`(n<2, n, 2*b(n-1, k)+(k-1)*b(n-2, k))
        end:
    a:= n-> b(n$2)/n:
    seq(a(n), n=1..25);  # Alois P. Heinz, Oct 04 2022
  • Mathematica
    Expand[Table[((1 + Sqrt[n])^n - (1 - Sqrt[n])^n)/(2*n*Sqrt[n]), {n, 1, 27}]]
  • Python
    from sympy import simplify, sqrt
    def A357580(n): return simplify(((1+sqrt(n))**n-(1-sqrt(n))**n)/(n*sqrt(n)))>>1 # Chai Wah Wu, Oct 14 2022

Formula

a(n) = A357502(n)/n.
From Alois P. Heinz, Oct 04 2022: (Start)
a(n) = [x^n] x/(n*(1-2*x-(n-1)*x^2)).
a(n) = Sum_{j=0..floor(n/2)} n^(j-1) * binomial(n,2*j+1).
a(n) = A099173(n,n)/n. (End)