A357585 Triangle read by rows. Inverse of the convolution triangle of A108524, the number of ordered rooted trees with n generators.
1, 0, 1, 0, 2, 1, 0, 7, 4, 1, 0, 32, 18, 6, 1, 0, 166, 92, 33, 8, 1, 0, 926, 509, 188, 52, 10, 1, 0, 5419, 2964, 1113, 328, 75, 12, 1, 0, 32816, 17890, 6792, 2078, 520, 102, 14, 1, 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1
Offset: 0
Examples
Triangle T(n, k) starts: [0] 1; [1] 0, 1; [2] 0, 2, 1; [3] 0, 7, 4, 1; [4] 0, 32, 18, 6, 1; [5] 0, 166, 92, 33, 8, 1; [6] 0, 926, 509, 188, 52, 10, 1; [7] 0, 5419, 2964, 1113, 328, 75, 12, 1; [8] 0, 32816, 17890, 6792, 2078, 520, 102, 14, 1; [9] 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1;
Programs
-
Maple
InvPMatrix := proc(dim, seqfun) local k, m, M, A; if dim < 1 then return [] fi; A := [seq(seqfun(i), i = 1..dim-1)]; M := Matrix(dim, shape=triangular[lower]); M[1, 1] := 1; for m from 2 to dim do M[m, m] := M[m - 1, m - 1] / A[1]; for k from m-1 by -1 to 2 do M[m, k] := M[m - 1, k - 1] - add(A[i+1] * M[m, k + i], i = 1..m-k) / A[1] od od; M end: InvPMatrix(10, n -> [1, -2][irem(n-1, 2) + 1]);
Comments