cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357588 The compositional inverse of n -> n^[isprime(n)], where [b] is the Iverson bracket of b.

Original entry on oeis.org

1, -2, 5, -11, 6, 146, -1295, 7712, -36937, 141514, -357676, -322973, 12078666, -102218510, 623243991, -3041134727, 11440387382, -23657862864, -95377084665, 1570488584608, -12255377466362, 72288056416374, -340793435817068, 1186234942871544, -1525020468715715
Offset: 1

Views

Author

Peter Luschny, Oct 04 2022

Keywords

Crossrefs

Programs

  • Maple
    # REVERT from N. J. A. Sloane's 'Transforms' (see the footer of the page).
    REVERT([seq(if isprime(k) then k else 1 fi, k = 1..25)]);
    # Alternative:
    CompInv := proc(len, seqfun) local n, k, m, g, M, A;
    A := [seq(seqfun(i), i=1..len)];
    M := Matrix(len+1, shape=triangular[lower]); M[1,1] := 1;
    for m from 2 to len + 1 do M[m, m] := M[m - 1, m - 1]/A[1];
    for k from m-1 by -1 to 2 do M[m, k] := M[m-1, k-1] -
    add(A[i+1]*M[m, k+i], i=1..m-k)/A[1] od od; seq(M[k, 2], k=2..len + 1) end:
    CompInv(25, n -> if isprime(n) then n else 1 fi);