A357368
Triangle read by rows. Convolution triangle of the prime indicator sequence A089026.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 1, 10, 6, 1, 0, 5, 14, 21, 8, 1, 0, 1, 23, 47, 36, 10, 1, 0, 7, 28, 90, 108, 55, 12, 1, 0, 1, 49, 147, 258, 205, 78, 14, 1, 0, 1, 46, 249, 520, 595, 346, 105, 16, 1, 0, 1, 75, 360, 978, 1437, 1185, 539, 136, 18, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 2, 1;
[3] 0, 3, 4, 1;
[4] 0, 1, 10, 6, 1;
[5] 0, 5, 14, 21, 8, 1;
[6] 0, 1, 23, 47, 36, 10, 1;
[7] 0, 7, 28, 90, 108, 55, 12, 1;
[8] 0, 1, 49, 147, 258, 205, 78, 14, 1;
[9] 0, 1, 46, 249, 520, 595, 346, 105, 16, 1;
-
PMatrix := proc(dim, a) local n, k, m, g, M, A;
if n = 0 then return [1] fi;
A := [seq(a(i), i = 1..dim-1)];
M := Matrix(dim, shape=triangular[lower]); M[1, 1] := 1;
for m from 2 to dim do
M[m, m] := M[m - 1, m - 1] * A[1];
for k from m-1 by -1 to 2 do
M[m, k] := add(A[i]*M[m-i, k-1], i = 1..m-k+1)
od od; M end:
a := n -> if isprime(n) then n else 1 fi: PMatrix(10, a);
# Alternatively, as the coefficients of row polynomials:
P := proc(n, x, a) option remember; ifelse(n = 0, 1,
x*add(a(n - k)*P(k, x, a), k = 0..n-1)) end:
Pcoeffs := proc(n, a) seq(coeff(P(n, x, a), x, k), k=0..n) end:
seq(Pcoeffs(n, a), n = 0..9);
# Alternatively, term by term:
T := proc(n, k, a) option remember; # Alois P. Heinz style
`if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, a(n)),
(q->add(T(j, q, a)*T(n-j, k-q, a), j=0..n))(iquo(k, 2)))) end:
seq(seq(T(n, k, a), k=0..n), n=0..9);
-
PMatrix[dim_, a_] := Module[{n, k, m, g, M, A}, If[n == 0, Return[1]]; A = Array[a, dim-1]; M = Array[0&, {dim, dim}]; M[[1, 1]] = 1; For[m = 2, m <= dim, m++, M[[m, m]] = M[[m-1, m-1]]*A[[1]]; For[k = m-1, k >= 2, k--, M[[m, k]] = Sum[A[[i]]*M[[m-i, k-1]], {i, 1, m-k+1}]]]; M];
a[n_] := If[PrimeQ[n], n, 1];
nmax = 10;
PM = PMatrix[nmax+1, a];
T[n_, k_] := PM[[n+1, k+1]];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 21 2022 *)
-
def ConvTriangle(dim: int, a) -> list[list[int]]:
if callable(a): # Cache the input sequence.
A = [a(i) for i in range(1, dim)]
else:
A = a
print("In:", A)
C = [[0 for k in range(m + 1)] for m in range(dim)]
C[0][0] = 1
for m in range(1, dim):
C[m][m] = C[m - 1][m - 1] * A[0]
for k in range(m - 1, 0, -1):
C[m][k] = sum(A[i] * C[m - i - 1][k - 1] for i in range(m - k + 1))
return C
from sympy import isprime, flatten
def a(n): return n if isprime(n) else 1
print(flatten(ConvTriangle(10, a)))
A126120
Catalan numbers (A000108) interpolated with 0's.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, 0, 16796, 0, 58786, 0, 208012, 0, 742900, 0, 2674440, 0, 9694845, 0, 35357670, 0, 129644790, 0, 477638700, 0, 1767263190, 0, 6564120420, 0, 24466267020, 0, 91482563640, 0, 343059613650, 0
Offset: 0
G.f. = 1 + x^2 + 2*x^4 + 5*x^6 + 14*x^8 + 42*x^10 + 132*x^12 + 429*x^14 + ...
From _Gus Wiseman_, Nov 14 2022: (Start)
The a(0) = 1 through a(8) = 14 ordered binary rooted trees with n + 1 nodes (ranked by A358375):
o . (oo) . ((oo)o) . (((oo)o)o) . ((((oo)o)o)o)
(o(oo)) ((o(oo))o) (((o(oo))o)o)
((oo)(oo)) (((oo)(oo))o)
(o((oo)o)) (((oo)o)(oo))
(o(o(oo))) ((o((oo)o))o)
((o(o(oo)))o)
((o(oo))(oo))
((oo)((oo)o))
((oo)(o(oo)))
(o(((oo)o)o))
(o((o(oo))o))
(o((oo)(oo)))
(o(o((oo)o)))
(o(o(o(oo))))
(End)
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Ch. 49, Hemisphere Publishing Corp., 1987.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
- Martin Aigner, Catalan and other numbers: a recurrent theme, in Algebraic Combinatorics and Computer Science, a Tribute to Gian-Carlo Rota, pp.347-390, Springer, 2001.
- Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
- Radica Bojicic, Marko D. Petkovic and Paul Barry, Hankel transform of a sequence obtained by series reversion II-aerating transforms, arXiv:1112.1656 [math.CO], 2011.
- Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv:1110.6638 [math.NT], 2011.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Kiran S. Kedlaya and Andrew V. Sutherland, HyperellipticCurves, L-Polynomials, and Random Matrices. In: Arithmetic, Geometry, Cryptography, and Coding Theory: International Conference, November 5-9, 2007, CIRM, Marseilles, France. (Contemporary Mathematics; v.487)
- S. Mizera, Combinatorics and Topology of Kawai-Lewellen-Tye Relations, arXiv:1706.08527 [hep-th], 2017.
- Eric Rowland, Pattern avoidance in binary trees, J. Comb. Theory A 117 (6) (2010) 741-758, Sec. 3.1.
- Yidong Sun and Fei Ma, Minors of a Class of Riordan Arrays Related to Weighted Partial Motzkin Paths, arXiv:1305.2015 [math.CO], 2013.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 99.
- Y. Wang and Z.-H. Zhang, Combinatorics of Generalized Motzkin Numbers, J. Int. Seq. 18 (2015) # 15.2.4.
These trees (ordered binary rooted) are ranked by
A358375.
-
&cat [[Catalan(n), 0]: n in [0..30]]; // Vincenzo Librandi, Jul 28 2016
-
with(combstruct): grammar := { BB = Sequence(Prod(a,BB,b)), a = Atom, b = Atom }: seq(count([BB,grammar], size=n),n=0..47); # Zerinvary Lajos, Apr 25 2007
BB := {E=Prod(Z,Z), S=Union(Epsilon,Prod(S,S,E))}: ZL:=[S,BB,unlabeled]: seq(count(ZL, size=n), n=0..45); # Zerinvary Lajos, Apr 22 2007
BB := [T,{T=Prod(Z,Z,Z,F,F), F=Sequence(B), B=Prod(F,Z,Z)}, unlabeled]: seq(count(BB, size=n+1), n=0..45); # valid for n> 0. # Zerinvary Lajos, Apr 22 2007
seq(n!*coeff(series(hypergeom([],[2],x^2),x,n+2),x,n),n=0..45); # Peter Luschny, Jan 31 2015
# Using function CompInv from A357588.
CompInv(48, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 07 2022
-
a[n_?EvenQ] := CatalanNumber[n/2]; a[n_] = 0; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Sep 10 2012 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ BesselI[ 1, 2 x] / x, {x, 0, n}]]; (* Michael Somos, Mar 19 2014 *)
bot[n_]:=If[n==1,{{}},Join@@Table[Tuples[bot/@c],{c,Table[{k,n-k-1},{k,n-1}]}]];
Table[Length[bot[n]],{n,10}] (* Gus Wiseman, Nov 14 2022 *)
Riffle[CatalanNumber[Range[0,50]],0,{2,-1,2}] (* Harvey P. Dale, May 28 2024 *)
-
from math import comb
def A126120(n): return 0 if n&1 else comb(n,m:=n>>1)//(m+1) # Chai Wah Wu, Apr 22 2024
-
def A126120_list(n) :
D = [0]*(n+2); D[1] = 1
b = True; h = 2; R = []
for i in range(2*n-1) :
if b :
for k in range(h,0,-1) : D[k] -= D[k-1]
h += 1; R.append(abs(D[1]))
else :
for k in range(1,h, 1) : D[k] += D[k+1]
b = not b
return R
A126120_list(46) # Peter Luschny, Jun 03 2012
A007440
Reversion of g.f. for Fibonacci numbers 1, 1, 2, 3, 5, ....
Original entry on oeis.org
1, -1, 0, 2, -3, -1, 11, -15, -13, 77, -86, -144, 595, -495, -1520, 4810, -2485, -15675, 39560, -6290, -159105, 324805, 87075, -1592843, 2616757, 2136539, -15726114, 20247800, 32296693, -152909577, 145139491, 417959049, -1460704685, 885536173, 4997618808, -13658704994
Offset: 1
G.f. = x - x^2 + 2*x^4 - 3*x^5 - x^6 + 11*x^7 - 15*x^8 - 13*x^9 + 77*x^10 - 86*x^11 - 144*x^12 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Gennady Eremin, Table of n, a(n) for n = 1..800 (first 300 terms from Vincenzo Librandi)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972 (p. 16, Reversion of Series 3.6.25).
- Paul Barry, Generalized Catalan Numbers, Hankel Transforms and Somos-4 Sequences , J. Int. Seq. 13 (2010) #10.7.2.
- Paul Barry, On the Central Coefficients of Bell Matrices, J. Int. Seq. 14 (2011) # 11.4.3, page 7.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Gennady Eremin, Walking in the OEIS: From Motzkin numbers to Fibonacci numbers. The "shadows" of Motzkin numbers, arXiv:2108.10676 [math.CO], 2021.
- Index entries for reversions of series
-
A007440 := n -> (-1)^(n+1)*hypergeom([1 - n/2, 1/2 -n/2], [2], -4):
seq(simplify(A007440(n)), n=1..35); # Peter Luschny, Mar 19 2018, adapted to offset Jul 21 2023
# Using function CompInv from A357588.
CompInv(25, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
-
a[1] = 1; a[2] = -1; a[n_] := a[n] = (-5*(n-2)*a[n-2] + (1-2*n)*a[n-1])/(n+1); Array[a, 36] (* Jean-François Alcover, Apr 18 2014 *)
Rest[CoefficientList[Series[(-1-x+Sqrt[1+2*x+5*x^2])/(2*x),{x,0,20}],x]] (* Vaclav Kotesovec, Apr 25 2015 *)
-
a(n)=polcoeff((-1-x+sqrt(1+2*x+5*x^2+x^2*O(x^n)))/(2*x),n)
-
Vec(serreverse(x/(1-x-x^2)+O(x^66))) /* Joerg Arndt, Aug 19 2012 */
-
A007440 = [0, 1, -1]
for n in range(3, 801):
A007440.append( (-(2*n-1)*A007440[-1]
- 5*(n-2)*A007440[-2])//(n+1) )
for n in range(1, 801):
print(n, A007440[n]) # Gennady Eremin, May 10 2021
-
def A007440_list(len):
T = [0]*(len+1); T[1] = 1; R = [1]
for n in (1..len-1):
a,b,c = 1,0,0
for k in range(n,-1,-1):
r = a - b - c
if k < n : T[k+2] = u;
a,b,c = T[k-1],a,b
u = r
T[1] = u; R.append(u)
return R
A007440_list(36) # Peter Luschny, Nov 01 2012
A007312
Reversion of g.f. (with constant term omitted) for partition numbers.
Original entry on oeis.org
1, -2, 5, -15, 52, -200, 825, -3565, 15900, -72532, 336539, -1582593, 7524705, -36111810, 174695712, -851020367, 4171156249, -20555470155, 101787990805, -506227992092, 2527493643612, -12663916942984, 63656297034920, -320914409885850, 1622205233276889
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
# Using function CompInv from A357588.
CompInv(25, n -> combinat:-numbpart(n)); # Peter Luschny, Oct 05 2022
-
nmax = 30; Rest[CoefficientList[InverseSeries[Series[Sum[PartitionsP[n]*x^n, {n, 1, nmax}], {x, 0, nmax}]], x]] (* Vaclav Kotesovec, Nov 11 2017 *)
Rest[CoefficientList[InverseSeries[Series[-1 + 1/QPochhammer[x],{x,0,30}],x],x]] (* Vaclav Kotesovec, Jan 18 2024 *)
(* Calculation of constant d: *) Chop[1/r /. FindRoot[{(1 + r)*QPochhammer[s, s] == 1, Log[1 - s] + QPolyGamma[0, 1, s] - (1 + r)*s*Log[s] * Derivative[0, 1][QPochhammer][s, s] == 0}, {r, -1/5}, {s, -1/2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 18 2024 *)
Signs corrected Dec 24 2001
A179848
Expansion of series reversion of generating function for triangular numbers.
Original entry on oeis.org
0, 1, -3, 12, -55, 273, -1428, 7752, -43263, 246675, -1430715, 8414640, -50067108, 300830572, -1822766520, 11124755664, -68328754959, 422030545335, -2619631042665, 16332922290300, -102240109897695, 642312451217745, -4048514844039120, 25594403741131680
Offset: 0
G.f. = x - 3*x^2 + 12*x^3 - 55*x^4 + 273*x^5 - 1428*x^6 + 7752*x^7 - 43263*x^8 + ...
-
[n le 0 select 0 else (-1)^(n+1)*Factorial(3*n)/( Factorial(n)* Factorial(2*n+1)): n in [0..30]]; // G. C. Greubel, Aug 14 2018
-
a:= n-> coeff(series(RootOf(A=x*(1-A)^3, A), x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, May 16 2012
# Using function CompInv from A357588.
0, CompInv(23, n -> n*(n+1)/2); # Peter Luschny, Oct 05 2022
-
CoefficientList[Series[1 - Sinh[ArcSinh[Sqrt[27*x/4]]/3]/Sqrt[3*x/4], {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
-
{a(n) = if( n<1, 0, -(-1)^n * (3*n)! / (n! * (2*n+1)!) )};
-
{a(n) = if( n<1, 0, polcoeff( serreverse( x / (1 - x)^3 + x * O(x^n) ), n))};
-
{a(n) = my(A); if( n<0, 0, A = O(x); for( k = 0, n, A = x * (1 - A)^3 ); polcoeff( A, n ))};
A091593
Reversion of Jacobsthal numbers A001045.
Original entry on oeis.org
1, -1, -1, 5, -3, -21, 51, 41, -391, 407, 1927, -6227, -2507, 49347, -71109, -236079, 966129, 9519, -7408497, 13685205, 32079981, -167077221, 60639939, 1209248505, -2761755543, -4457338681, 30629783831, -22124857219, -206064020315, 572040039283, 590258340811
Offset: 0
-
a := n -> hypergeom([-n,-n-1], [2], -2);
seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 22 2014
# Using function CompInv from A357588.
CompInv(25, n -> (2^n - (-1)^n)/3 ); # Peter Luschny, Oct 07 2022
-
a[n_] := Hypergeometric2F1[-n - 1, -n - 1, 2, -2] + (n + 1)*Hypergeometric2F1[-n, -n, 3, -2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 03 2016, after Vladimir Kruchinin *)
-
a(n) := hypergeometric([ -n - 1, -n - 1 ], [ 2 ], -2) + (n + 1) * hypergeometric([ -n, -n ], [ 3 ], -2); /* Vladimir Kruchinin, Oct 12 2011 */
-
# Algorithm of L. Seidel (1877)
def A091593_list(n) :
D = [0]*(n+2); D[1] = 1
R = []; b = false; h = 1
for i in range(2*n) :
if b :
for k in range(1, h, 1) : D[k] += -2*D[k+1]
R.append(D[1])
else :
for k in range(h, 0, -1) : D[k] += D[k-1]
h += 1
b = not b
return R
A091593_list(30) # Peter Luschny, Oct 19 2012
A108524
Number of ordered rooted trees with n generators.
Original entry on oeis.org
1, 2, 7, 32, 166, 926, 5419, 32816, 203902, 1292612, 8327254, 54358280, 358769152, 2390130038, 16051344307, 108548774240, 738563388214, 5052324028508, 34727816264050, 239733805643552, 1661351898336676, 11553558997057772, 80603609263563262, 563972937201926432
Offset: 1
-
# Using function CompInv from A357588.
CompInv(24, n -> [1, -2][irem(n-1, 2) + 1]); # Peter Luschny, Oct 08 2022
-
Rest[CoefficientList[Series[(Sqrt[4*x^2-8*x+1]-1)/(2*x-4), {x, 0, 20}], x]] (* Vaclav Kotesovec, Oct 18 2012 *)
-
a(n):=sum((i*binomial(n+1,i)*sum((-1)^j*2^(n-j)*binomial(n,j)*binomial(2*n-j-i-1,n-1),j,0,n-i))/2^i,i,1,n+1)/(n*(n+1)); /* Vladimir Kruchinin, May 10 2011 */
A108623
G.f. satisfies x = A(x)*(1-A(x))/(1-A(x)-(A(x))^2).
Original entry on oeis.org
1, 0, -1, -1, 1, 4, 3, -8, -23, -10, 67, 153, 9, -586, -1081, 439, 5249, 7734, -7941, -47501, -53791, 105314, 430119, 343044, -1249799, -3866556, -1730017, 13996097, 34243897, 1947204, -150962373, -296101864, 121857185, 1582561870
Offset: 1
G.f. = x - x^3 - x^4 + x^5 + 4*x^6 + 3*x^7 - 8*x^8 - 23*x^9 - 10*x^10 + ...
-
R:=PowerSeriesRing(Rationals(), 41);
Coefficients(R!( (1+x-Sqrt(1-2*x+5*x^2))/(2*(1-x)) )); // G. C. Greubel, Oct 20 2023
-
# Using function CompInv from A357588.
CompInv(34, n -> ifelse(n=-1, 1, combinat:-fibonacci(n-2))); # Peter Luschny, Oct 05 2022
-
CoefficientList[Series[(1+x-Sqrt[1-2*x+5*x^2])/(2*x*(1-x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
a[ n_] := SeriesCoefficient[ (1 + x - Sqrt[1 - 2 x + 5 x^2]) / (2 (1 - x)), {x, 0, n}]; (* Michael Somos, May 19 2014 *)
a[ n_] := If[ n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[ (x - x^2) / (1 - x - x^2), {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, May 19 2014 *)
-
{a(n) = if( n<0, 0, polcoeff( (1 + x - sqrt(1 - 2*x + 5*x^2 + x^2 * O(x^n))) / (2 * (1 - x)), n))}; /* Michael Somos, May 19 2014 */
-
{b(n) = if( n<1, 0, polcoeff( serreverse( (x - x^2) / (1 - x - x^2) + x * O(x^n)), n))}; /* Michael Somos, May 19 2014 */
-
def A108623_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x-sqrt(1-2*x+5*x^2))/(2*(1-x)) ).list()
a=A108623_list(41); a[1:] # G. C. Greubel, Oct 20 2023
A176025
Series reversion of eta(-x) - 1.
Original entry on oeis.org
1, 1, 2, 5, 15, 49, 169, 603, 2205, 8217, 31095, 119185, 461790, 1805810, 7117865, 28250549, 112806534, 452862663, 1826705940, 7399893522, 30092189864, 122799412699, 502709227763, 2063939448400, 8496355807149, 35061664792175
Offset: 0
G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 49*x^6 +...
eta(-x)-1 = x - x^2 - x^5 - x^7 - x^12 + x^15 + x^22 + x^26 +...
eta(-x)-1 = Sum_{n>=1} (-1)^[n/2]*x^(n(3n-1)/2)*(1 + (-x)^n).
-
# Using function CompInv from A357588.
CompInv(26, proc(n) 24*n + 1; if issqr(%) then sqrt(%); (-1)^(n + irem(iquo(% + irem(%, 6), 6), 2)) else 0 fi end); # Peter Luschny, Oct 05 2022
-
-InverseSeries[Series[QPochhammer[x], {x, 0, 20}]][[3]] (* Vladimir Reshetnikov, Nov 21 2015 *)
-
a(n)=polcoeff(serreverse(-1+eta(-x+x*O(x^n))),n)
A007296
Reversion of (1 + g.f. for primes).
Original entry on oeis.org
1, -2, 5, -15, 52, -200, 827, -3596, 16191, -74702, 350794, -1669439, 8029728, -38963552, 190499461, -937550897, 4641253152, -23096403422, 115475977145, -579799302750, 2922325238788, -14780595276064, 74995317703482, -381625745964018, 1947147485751919
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
read transforms; s1 := [seq(ithprime(i),i=1..40)]; s2 := [1,op(%)]; REVERT(%);
# Alternative, using function CompInv from A357588.
CompInv(25, n -> if n = 1 then 1 else ithprime(n-1) fi); # Peter Luschny, Oct 05 2022
-
nmax = 25; Rest[CoefficientList[InverseSeries[Series[x + Sum[Prime[k-1]*x^k, {k, 2, nmax}], {x, 0, nmax}], x], x]] (* Vaclav Kotesovec, Apr 21 2020 *)
Signs corrected Dec 24 2001
Showing 1-10 of 17 results.
Comments