cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A291489 Expansion of the series reversion of -1 + Product_{k>=1} (1 + x^k)^k.

Original entry on oeis.org

1, -2, 3, 2, -41, 196, -541, 229, 7235, -48228, 175956, -254933, -1575661, 14909191, -67194669, 153944915, 292516673, -4968647665, 27275432639, -82747735226, 3883854725, 1660136515050, -11302429310683, 42362000190568, -53376259124482, -520085199830413, 4671353423344131
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2017

Keywords

Comments

Reversion of g.f. (with constant term omitted) for A026007.

Crossrefs

Programs

  • Mathematica
    nmax = 27; Rest[CoefficientList[InverseSeries[Series[-1 + Product[(1 + x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x], x]]
    nmax = 27; Rest[CoefficientList[InverseSeries[Series[-1 + Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x], x]]

Formula

G.f. A(x) satisfies: -1 + Product_{k>=1} (1 + A(x)^k)^k = x.

A176950 G.f.: A(x) = 1 + x/Series_Reversion(eta(x) - 1).

Original entry on oeis.org

1, 1, 2, 6, 19, 64, 223, 799, 2927, 10922, 41382, 158800, 615939, 2410880, 9510650, 37774357, 150929671, 606239784, 2446566976, 9915210221, 40336587662, 164662328192, 674300310836, 2769234827610, 11402791485018, 47067085053193
Offset: 1

Views

Author

Paul D. Hanna, Apr 29 2010

Keywords

Comments

Here eta(q) is the Dedekind eta function without the q^(1/24) factor (A010815).

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 19*x^5 + 64*x^6 +...
eta(x)-1 = -x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + x^26 +...
x/(A(x)-1) = -x - x^2 - 2*x^3 - 5*x^4 - 15*x^5 - 49*x^6 - 169*x^7 -... (cf. A176025).
		

Crossrefs

Cf. A176025.

Programs

  • Mathematica
    Rest[CoefficientList[1 + x/InverseSeries[Series[QPochhammer[x] - 1, {x, 0, 30}]], x]] (* Vaclav Kotesovec, Nov 11 2017 *)
  • PARI
    {a(n)=polcoeff(1+x/serreverse(eta(x+x^2*O(x^n))-1),n)}

Formula

G.f. satisfies: eta(x/(A(x)-1)) = 1 + x.
G.f. satisfies: A(eta(x)-1) = 1 + (eta(x)-1)/x.
a(n) ~ c * d^n / n^(3/2), where d = 4.37926411884088478340484205014088510... and c = 0.13031461371242728737549949707031... - Vaclav Kotesovec, Nov 11 2017

A291488 Expansion of the series reversion of -1 + Product_{k>=1} 1/(1 - x^k)^k.

Original entry on oeis.org

1, -3, 12, -58, 318, -1896, 11966, -78595, 531486, -3674324, 25845131, -184348434, 1330147092, -9690872427, 71189146313, -526703176813, 3921274277132, -29354616797397, 220824254874928, -1668453804382315, 12655766723174710, -96340024533522759, 735747052686408916, -5635489764030599334
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2017

Keywords

Comments

Reversion of g.f. (with constant term omitted) for A000219.

Crossrefs

Programs

  • Mathematica
    nmax = 24; Rest[CoefficientList[InverseSeries[Series[-1 + Product[1/(1 - x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x], x]]
    nmax = 24; Rest[CoefficientList[InverseSeries[Series[-1 + Exp[Sum[DivisorSigma[2, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x], x]]

Formula

G.f. A(x) satisfies: -1 + Product_{k>=1} 1/(1 - A(x)^k)^k = x.

A291695 Expansion of the series reversion of Sum_{i>=1} x^i/(1 - x^i) / Product_{j>=1} (1 - x^j).

Original entry on oeis.org

1, -3, 12, -57, 304, -1757, 10746, -68450, 449274, -3016645, 20618317, -142946735, 1002722249, -7103064540, 50738237140, -365049115546, 2642981328372, -19241453032254, 140770867457795, -1034409857616986, 7631075823632553, -56497364856268721, 419641611512419630, -3126180409889288924
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

Reversion of g.f. for A006128.

Crossrefs

Programs

  • Mathematica
    nmax = 24; Rest[CoefficientList[InverseSeries[Series[Sum[x^i/(1 - x^i), {i, 1, nmax}] / Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x], x]]
    nmax = 24; Rest[CoefficientList[InverseSeries[Series[(Log[1-x] + QPolyGamma[0, 1, x]) / (Log[x]*QPochhammer[x]), {x, 0, nmax}], x], x]] (* Vaclav Kotesovec, Apr 21 2020 *)

Formula

G.f. A(x) satisfies: Sum_{i>=1} A(x)^i/(1 - A(x)^i) / Product_{j>=1} (1 - A(x)^j) = x.
G.f. A(x) satisfies: Sum_{i>=1} i*A(x)^i / Product_{j=1..i} (1 - A(x)^j) = x.
Showing 1-4 of 4 results.