cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A104507 Row sums of triangle A104505, which is equal to the right-hand side of the triangle A084610 of coefficients in (1+x-x^2)^n.

Original entry on oeis.org

1, 0, -2, -3, 2, 15, 19, -28, -134, -129, 353, 1254, 791, -4238, -11818, -3123, 49162, 110007, -17783, -554458, -996323, 690932, 6096792, 8624747, -12287153, -65419110, -69285296, 178655307, 684550946, 483569751, -2354830741, -6970706252, -2324044054, 29195280375, 68793790705
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x/((1 - x)) + 1/((-Sqrt[5 x^2 - 2 x + 1] + x + 1)) x (1 - (5 x - 1)/(Sqrt[5 x^2 - 2 x + 1]))), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 05 2015 *)
  • Maxima
    a(n):=sum((-1)^j*binomial(n,j)*binomial(n-j-1,n-2*j),j,0,n/2); /* Vladimir Kruchinin, Oct 04 2015 */
    
  • PARI
    a(n)=sum(k=0,n,polcoeff((1+x-x^2)^n,n+k))
    
  • PARI
    a(n) = sum(k=0, n/2, (-1)^k*binomial(n,k)*binomial(n-k-1,n-2*k));
    vector(40, n, a(n-1)) \\ Altug Alkan, Oct 04 2015

Formula

G.f.: (x/((1-x))+1/((-sqrt(5*x^2-2*x+1)+x+1))*x*(1-(5*x-1)/(sqrt(5*x^2-2*x+1)))). - Vladimir Kruchinin, Oct 04 2015
a(n) = Sum_{j=0..n/2}((-1)^j*binomial(n,j)*binomial(n-j-1,n-2*j)). - Vladimir Kruchinin, Oct 04 2015
From Peter Bala, Jul 24 2025: (Start)
a(n) = [x^n] (1 - x^2/(1 - x))^n. Cf. A246437.
The Gauss congruences hold: a(n*p^k) == a(n*p^(k-1)) (mod p^k) for all primes p and all positive integers n and k.
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 - x^2 - x^3 + x^4 + 4*x^5 + ... is the g.f. of A108623.(End)

A108624 G.f. satisfies x = A(x)*(1+A(x))/(1-A(x)-(A(x))^2).

Original entry on oeis.org

1, 0, -1, 1, 1, -4, 3, 8, -23, 10, 67, -153, 9, 586, -1081, -439, 5249, -7734, -7941, 47501, -53791, -105314, 430119, -343044, -1249799, 3866556, -1730017, -13996097, 34243897, -1947204, -150962373, 296101864, 121857185
Offset: 1

Views

Author

Christian G. Bower, Jun 12 2005

Keywords

Comments

Row sums of triangle A202327. - Peter Luschny, Apr 26 2017

Crossrefs

Except for signs, same as A108623.

Programs

  • Julia
    function A108624_list(len::Int)
        len <= 0 && return BigInt[]
        T = zeros(BigInt, len, len); T[1,1] = 1
        S = Array(BigInt, len); S[1] = 1
        for n in 2:len
            T[n,n] = 1
            for k in 1:n-1
                T[n,k] = (k > 1 ? T[n-1,k-1] : 0) - T[n-1,k] - T[n-1,k+1]
            end
            S[n] = sum(T[n,k] for k in 1:n)
        end
    S end
    println(A108624_list(33)) # Peter Luschny, Apr 27 2017
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 41);
    Coefficients(R!( (-1+x+Sqrt(1+2*x+5*x^2))/(2*(1+x)) )); // G. C. Greubel, Oct 20 2023
    
  • Mathematica
    a[n_]:= Sum[k Sum[(-1)^(j-k) Binomial[j, 2j-n-k] Binomial[n, j], {j, 0, n}], {k, 1, n}]/n;
    Array[a, 33] (* Jean-François Alcover, Jun 13 2019, after Vladimir Kruchinin *)
    Rest@CoefficientList[Series[(-1+x+Sqrt[1+2*x+5*x^2])/(2*(1+x)), {x,0, 41}], x] (* G. C. Greubel, Oct 20 2023 *)
  • SageMath
    def A108624_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (-1+x+sqrt(1+2*x+5*x^2))/(2*(1+x))).list()
    a=A108624_list(41); a[1:] # G. C. Greubel, Oct 20 2023

Formula

a(n) = (1/n)*Sum_{k=1..n} ( k * Sum_{j=0..n} (-1)^(k+j)*binomial(j, 2*j-n-k)*binomial(n,j) ). - Vladimir Kruchinin, May 19 2012
G.f.: (-1 + x + sqrt(1+2*x+5*x^2))/(2*(1+x)). - G. C. Greubel, Oct 20 2023

A366081 Expansion of (1/x) * Series_Reversion( x*(1-x)^2/(1-x-x^2) ).

Original entry on oeis.org

1, 1, 1, 0, -5, -22, -68, -165, -285, -96, 1892, 10574, 38436, 107175, 217063, 165232, -1150565, -7780744, -31173680, -94537100, -212903852, -239418048, 788015576, 6734057510, 29396759220, 95418332383, 233697161887, 334222633632, -514863450175, -6299672869750
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(2*n-k, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(2*n-k,n-2*k).

A366082 Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1-x-x^2) ).

Original entry on oeis.org

1, 2, 6, 21, 79, 308, 1219, 4826, 18857, 71574, 257553, 837114, 2140496, 1379550, -35589730, -370646635, -2719034151, -17429175486, -103771133876, -588804389677, -3225403649859, -17180039158530, -89342552789741, -454604059204324, -2265246385921936
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(3*n-k+1, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(3*n-k+1,n-2*k).

A366083 Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1-x-x^2) ).

Original entry on oeis.org

1, 3, 14, 78, 478, 3109, 21063, 146997, 1049302, 7624330, 56198481, 419155136, 3157356819, 23984387314, 183519131353, 1413099475142, 10941294442694, 85132006090350, 665294548097852, 5219591907202092, 41095469624286421, 324595783790966343
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(4*n-k+2, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(4*n-k+2,n-2*k).

A039978 An example of a d-perfect sequence.

Original entry on oeis.org

1, 0, 2, 2, 1, 1, 0, 1, 1, 2, 1, 0, 0, 2, 2, 1, 2, 0, 0, 1, 2, 2, 0, 0, 1, 0, 2, 2, 1, 0, 0, 2, 2, 1, 2, 2, 0, 2, 1, 1, 0, 0, 2, 0, 1, 1, 2, 0, 0, 1, 1, 2, 1, 1, 0, 1, 2, 2, 0, 0, 1, 0, 0, 2, 0, 1, 1, 2, 2, 0, 2, 1, 1, 0, 2, 2, 1, 1, 0, 1, 1, 2, 1, 0, 0, 2, 2, 1, 2, 2, 0, 2, 1, 1, 0, 0, 2, 0, 1, 1, 2, 0, 0, 1, 1
Offset: 1

Views

Author

Keywords

Formula

a(n) = A108623(n) mod 3 - Christian G. Bower, Jun 12 2005

Extensions

More terms from Christian G. Bower, Jun 12 2005
Showing 1-6 of 6 results.