A366081 Expansion of (1/x) * Series_Reversion( x*(1-x)^2/(1-x-x^2) ).
1, 1, 1, 0, -5, -22, -68, -165, -285, -96, 1892, 10574, 38436, 107175, 217063, 165232, -1150565, -7780744, -31173680, -94537100, -212903852, -239418048, 788015576, 6734057510, 29396759220, 95418332383, 233697161887, 334222633632, -514863450175, -6299672869750
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Programs
-
PARI
a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(2*n-k, n-2*k))/(n+1);
Formula
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(2*n-k,n-2*k).