cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366081 Expansion of (1/x) * Series_Reversion( x*(1-x)^2/(1-x-x^2) ).

Original entry on oeis.org

1, 1, 1, 0, -5, -22, -68, -165, -285, -96, 1892, 10574, 38436, 107175, 217063, 165232, -1150565, -7780744, -31173680, -94537100, -212903852, -239418048, 788015576, 6734057510, 29396759220, 95418332383, 233697161887, 334222633632, -514863450175, -6299672869750
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(2*n-k, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(2*n-k,n-2*k).

A366083 Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1-x-x^2) ).

Original entry on oeis.org

1, 3, 14, 78, 478, 3109, 21063, 146997, 1049302, 7624330, 56198481, 419155136, 3157356819, 23984387314, 183519131353, 1413099475142, 10941294442694, 85132006090350, 665294548097852, 5219591907202092, 41095469624286421, 324595783790966343
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(4*n-k+2, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(4*n-k+2,n-2*k).
Showing 1-2 of 2 results.